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Motivation: Leveraging Human Data for Robotic Tasks

Autonomy: great for tasks
dangerous or inconvenient

Humans = Semantic Sensors
* Volunteering Information
* Answering Questions

If people can benefit from
robots, why can’t robots
benefit from people?
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Related Work: Semantic Sensing and Planning under Uncertainty

 Offline Continuous Partially Observable Markov * Adaptive Belief Trees [Kurniawati, Yadav, Robotics Research 2016]
Decision Process (CPOMDP) [Burks, Ahmed, FUSION 2018] — Requires seed offline policy solution

— Requires known static models

* Simple Online Value Iteration (SOVI) [Shani, Brafman, * Deep Learning [Lore, etal. ICCPS 2016]

Shimony, ECML 2005]
— Restricted to slowly changing models
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Research Vision

* Treat humans as taskable information providers for autonomous robots

* Integrate dynamic, ad-hoc models from human collaborators into tightly
coupled optimal sensing and planning in unknown/dynamic environments
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Contributions of this work

Proposed Dynamically Observable Monte-
Carlo Planning (DOMCP)

— Ad-hoc observation models

— Dynamically modifying optimal
planning

» Sketch based Human-Robot target search

— Real-time semantic codebook building
in unknown dynamic environments

— Requesting and evaluating human
semantic observations
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Acquiring Models: Sketch Interface

e Starts with outdated map which updates when
explored

* Create new observations with semantic labels and
spatial extent

* Volunteer information for fusion
* Human can independently gather information

* Policy combines movement and questions as
actions

— “Move North and ask ‘Is the Target West of the
Track’”
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Extracting Models from Sketches

Softmax Model

exp(wl'si + b,)
ZLQl exp(w!'sg + be)

p(ok|sk) =

North

§1. Build Convex Hull
2. Reduce by maximizing contributed angle
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Online POMDPs: Partially Observable Monte Carlo Planning (POMCP)
[Silver, Veness, NIPS 2010]

h h
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Uses a generative model
to build tree of histories

Originally assumed static models ‘ Minor modification accounts for

dynamic models
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DOMCP: Dynamically Observable Monte-Carlo Planning

* Modify existing planning
tree after model update

* Reallocates particles
according to new
observation likelihoods

e Retains prior information
consistent with new
model
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DOMCP: Dynamically Observable Monte-Carlo Planning
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Collaborating in Unknown Environments

Human Autonom

Volunteer
Update

Belief

Sketch

Observe Question
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Acquiring Models: Sketch Interface

e Starts with outdated map which updates when
explored

* Create new observations with semantic labels and
spatial extent

* Volunteer information for fusion
* Human can independently gather information

* Policy combines movement and questions as
actions

— “Move North and ask ‘Is the Target West of the
Track’”
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Simulations

Three Approaches:
MAP, POMCP, DOMCP

East Estimate

Target Position Estimate

Sketches, volunteer observations, 7| | | |
and target positions identical oot [H]
across runs ? —u-\sjﬁﬁ/\m
o] SRR
N=5 for each method A I |
Target Search Interface Simulation Results e
Method Mean Time to Capture  Std Dev
MAP 126.2 s +£37
POMCP 94.6 s +24
DOMCP 88.2 s +19
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Erroneous Human Input
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Correct Human Input

View
W Target
B Pursuer

r—=1

X Estimate

View
B Target
B Pursuer

ey

700 +
600 -
500 +
400 A
300 A
200 A
100 A

o
o~
-~
o
o
—
)
Fd f o
£ -
> o ©
o [
|II|I"|'|”’ I"O llllllll el
b w > C
o~ — o
J’ S o
\\o..\ 7)) nd; a
P —
3 - O <
P B a m
[ o -
||||||||||| - - ll_wl|||llllal
~
| o &
z < R
. = - |
l -
.......... o n— T |
’-’
l.'
- L o
o o o o o o o o o
o N o N o re! o rel
< m M o~ o~ — —
donWoda

Time (s)

0
O
®
o
9
o)
O
—
o
>
=
2]
P
9]
=2
o
)

<
0]
e
=)
0
m

&y



Conclusions

‘Presented Dynamically Observable Monte-
Carlo Planning (DOMCP):

* Efficiently adapts prior planning to new
observation models

* Retains relevant information from before
model changes

Online planning can effectively exploit
available human sensors for target search

* Requesting and evaluating human
semantic observations

* Adapting to hand sketched models
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Ongoing Work

Further relax model assumptions

Target is now on foot, moving Readjusting flight course for
intercept.

— Adapt policies to dynamic/unknown slowly towards that mountain.
transition and reward models

— Incorporate velocity, contextual
conditions, human states

Testing in realistic, scaled up environments
— Non-atomic, strategic movement actions
— Drone search in large open areas

— Fusion of additional sensor modalities such as
object detection/recognition, depth sensors
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Questions?
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Backup Slides
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Preliminary Results: Value of Human Sensor + POMDP Planning!?

* VB-GM-POMCP vs. simple greedy MAP planning (i.e. go straight to largest pdf peak)?

 Human sensing quality (for spatial target location updates only):

— no human: no sketch or linguistic location inputs provided
— Human A: large/imprecise sketches, fewer location updates with some mistakes
— Human B: small/precise sketches, more location updates with no mistakes

 Compare # steps taken by robot to find target (same data fed to both planners):

Preliminary Data: 1 test per condition

Number of MAP POMCP
Steps to Planner Planner

Capture
No Human 268 199

Human A 255 182
Human B 143 134




Semantic Observational Models [sweet, Ahmed, ACC 2016]

exp(w! sy, + bo)

A Useful Approach: Softmax Models  p(oy[si) = —
e exp(wlsi + be)

Dominant Regions

Segment continuous state space into
discrete classes Likelihoods for all classes
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Collaborative Bayesian Data Fusion for Target Localization

“Human push” “Robot pull”
No Targets Large white (Supervisory Sensing) (Active Sensing)
Detected truck is
nearby the [Kaupp, et al, FUSION 2005; [Kaupp, et al., RAS 2010;
trees, heading Bourgault, et al, IROS 2008] Lore, Sweet et al., ICCPS 2015]
North... [Ahmed and Campbell, ICRA 2010;  (VOI. decoupled from planning)
Ahmed, et al,, T-RO 2013;
Sweet and Ahmed, ACC 2016] Is ¢ €t .
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Research Vision

What room

Could I climb that
debris pile?

Is that a person
over there?

Is this area
dangerous?

Questions a Human could help answer!
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Active Semantic Sensing with Continuous State POMDPs (CPOMDPs)
_[Burks and Ahmed, CDC 2017]

P(Q[S)

Detect POMDP solvers find

o betec No Detec! policies T to map
P beliefs b to actions:
/ On the bridge
| b= p(S|,a)
A~ N(HJAL Ya1)

FPA ~ N(paz, Sas 7(b) = a

Actions I
= {Al1, A2, A3,...} ﬁ#
/
S

State = S

= (—00, 00)

Observations = (2

Optimal policies
maximize discounted
station -- is
target on the total expected reward
bridge?” over time:

E[Z ’YtTt]
t=0

(can include semantic
queries to human sensor!)

A3: “Holding

R

Rewards based on
proximity to target
+ action costs
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CPOMDPs: Approximate Value lteration in Belief Space

Alpha Element Backup for Point-Based Value Iteration

o (8) = / ot (s")p(ols")p(s'|s, a)ds’

ar(s) =rq(s)+7 Z arg max(< al ., b >)
at d
o a,o
PBVI-type solution on discretized space x
with « -vectors for policy
[Pineau, et al., JAIR 2006]

Gaussian Mixture (GM)

J
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Can represent arbitrary
policy functions & pdfs

Alpha Functions

Probability Density
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The Value of Questions

VOI(o) = Z p(o ma:z:a/p(s|0 = 0;)R(a, s)ds|)—mazx, /p(s)R(a,s)ds
0,€0 ‘
Value of Human - Expected Reward Expected Reward without
Observation (0) After Observation Observation

Most Valuable Questions

Robot Questions

e POMDPs implicitly find VOI during policy

. Is Zhora inside the study? ?
solution

Is Zhora inside the library? ?

e Canextract 2 3 . Nth most valuable Is Zhora right of the desk? o

question for minimal additional computation
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Last answer was:




Research Vision

What kind of information do
humans communicate?

e “Soft” semantic data

Humans = Semantic Sensors
* Volunteering Information
* Answering Questions

Robotic tasks can benefit from
human information, if only they
could ask the right questions!

University of Colorado
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Question: Where’s this conference
room for your Comps talk?

In the Northeast

40.007977° N part of the
105.262720° W Aerospace
Department
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