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Abstract— Autonomous robots can benefit greatly from
human-provided semantic characterizations of uncertain task
environments and states. However, the development of inte-
grated strategies which let robots model, communicate, and
act on such ‘soft data’ remains challenging. We present a
framework for active semantic sensing and planning in human-
robot teams which addresses these gaps by formally combining
the benefits of online sampling-based POMDP policies, multi-
modal semantic interaction, and Bayesian data fusion. This
approach lets humans opportunistically impose model structure
and dynamically extend the range of semantic soft data in
uncertain environments, which otherwise yield little information
to a lone robot. It also lets robots actively query humans for
new semantic data which update understanding and beliefs of
unknown environments for improved online planning. Dynamic
target search simulations show that active collaborative seman-
tic sensing leads to significant improvements in time and belief
state estimates required for interception versus conventional
planning, which relies on robotic sensing only.

I. INTRODUCTION

Autonomous robotic vehicles will greatly extend human
capabilities in domains such as space exploration [1], disaster
response [2], environmental monitoring [3], infrastructure
inspection [4], and defense [5]. Yet, the uncertain dynamic
nature of these settings, coupled with vehicle size-weight-
power-compute constraints, often necessitates some form of
human oversight to cope with the brittleness of autonomy
[6]. This has created interest in new forms of human-robot
interaction that can efficiently leverage human reasoning to
enhance robotic reasoning abilities. Probabilistic techniques
based on semantic language-based human-robot communi-
cation have gained considerable attention for information
fusion [7]–[12] and task planning [13]–[19]. However, ex-
isting approaches only allow robots to reason about limited
kinds of uncertainties, i.e. as long as task environments and
conditions are known a priori, or do not change in unforeseen
ways. This in turn limits the flexibility and utility of semantic
communication for adapting to new or unknown situations.

This work examines how robots operating in uncertain
environments can use semantic communication with humans
to solve the combined issues of model augmentation, multi-
level information fusion, and replanning under uncertainty
in an online manner. Such problems practically arise, for
instance, with time-sensitive dynamic target search in areas
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Fig. 1: Aerial robot searching for ground target with human
aiding via semantic labeling and referencing of environment.

with outdated/poor prior maps, which lead to uncertain robot
and target motion models as well as uncertain human input
models. We present a novel framework for integrated active
semantic sensing and planning in human-robot teams that
formally combines aspects of online partially observable
Markov decision process (POMDP) planning, sketch and
language-based semantic human-robot interfaces, and model-
based Bayesian data fusion.

As shown in Fig. 1, our approach features three key
technical innovations. Firstly, humans act as ‘ad hoc sensors’
that push multi-level semantic data to robots via structured
language, enabling robots to update task models and be-
liefs with information outside their nominal sensing range.
Secondly, humans can use real-time sketch interfaces to
update semantic language dictionaries grounded in uncer-
tain environments, thus dynamically extending the range
and flexibility of their observations. Finally, robots actively
query humans for specific semantic data at multiple task
model levels to improve online performance, while also non-
myopically planning to act with imperfect human sensors.
These features effectively enable online ‘reprogramming’ of
uncertain POMDPs together with human-robot sensor fusion
to support online replanning in complex environments.

II. MOTIVATING PROBLEMS AND BACKGROUND

We focus on dynamic target search problems in which a
robot must intercept a moving target as quickly as possible
through an uncertain environment. Figure 2 shows two ver-
sions this problem for an unmanned ground vehicle (UGV)
and an unmanned aerial system (UAS), which will be used
as examples. Major uncertainties arise in (but are not limited
to): vehicle motion and transition models (due to unknown
terrain or wind fields that are difficult for robots to sense);
target models and states (if targets display different dynamic
behaviors); and models of language-based semantic ‘human
sensor’ observations (e.g. Fig. 1), where ‘soft data’ can be
expressed with variable consistency/accuracy [9], [20].



Fig. 2: Left: ‘Golf Course Problem’: UGV navigates terrain
to intercept ground target; Right: ‘Road Network Problem’:
UAS tracks a ground target can deviate from road.

In each case, the environment includes map regions with
differing probabilistic state transition models that affect robot
and target motion dynamics. The robot carries a visual
sensor, which allows target proximity with a high probability
and subject to false alarms, without informing about the
environment. Finally, the robot can communicate with a
remote human, who can view the robot’s telemetry data,
sensing data, and map information with negligible time
delay and generate soft data, but issues no commands to
the robot. The robot plans its own movements to intercept
the target using available models and observations, assuming
an initial prior target state pdf. We next consider how the
robot can use semantic soft data to update knowledge of the
uncertain environment and target states as part of an optimal
autonomous planning process.

A. Language-based and Sketch-based Semantic Soft Data

The human primarily acts as an auxiliary (and imperfect)
semantic information source that can communicate with the
robot at any time via either one of two interfaces. The first
interface allows the human to compose linguistic statements
that are parsed and interpreted as target state observations.
As shown in Fig. 1, these are modeled in the structured
form ‘Target is/is not Desc Ref ’, where the Desc and Ref
elements are taken from a defined semantic codebook, and
the is/is not field toggles between positive and negative data
[21]. In prior work [11], [12], [20], [22], [23], probabilistic
likelihoods were developed for all possible statements in
a given codebook to support recursive Bayesian fusion of
linguistic human and robot sensor data. Since these works
considered only fully known environments, all relevant se-
mantic references could be enumerated in advance. However,
the environments here are not fully known in advance, so the
codebook is at best only partially defined at mission start.

This leads to the second interface: since new map in-
formation cannot be obtained from the robot’s sensor to
augment the codebook, the human may instead do this by
providing labeled 2D free-form sketches, which each depict
a spatially constrained region on a 2D map display (as in
Fig. 1 with ‘Pond’ and ‘Trees’, or in Fig. 2 with ‘Sand’ and
‘Fairway’). Building on [24], the codebook is automatically
augmented with the labels of new landmarks/references, so
that the corresponding spatial sketch data can also be used to
generate suitable soft data likelihood models for the linguistic
statement interface (see Fig. 1). However, unlike in [24],

human sketches here may also provide direct information
about probabilistic state transition models, to constrain how
the robot and target may traverse certain map areas. While
similar 2D sketch interfaces have also been developed for
robotics applications [13], [15], [25], [26], this is the first
time (to our knowledge) they have been used in the context
of multi-level data fusion for planning under uncertainty.

B. Optimal Planning and Sensing under Uncertainty

The robot must autonomously generate its own plans
for minimum time target interception, whether or not any
semantic soft data are provided. The presence of model un-
certainties, sensing errors, and process noise makes optimal
planning quite challenging. One family of decision-making
algorithms that accounts for these combined uncertainties are
partially observable Markov decision processes (POMDPs).
While POMDPs are impractical to solve exactly for all but
the most simple problems [27], a variety of powerful approx-
imations can exploit various features of particular problem
formulations. A POMDP is formally specified as a 7-tuple
(S,A, T ,R,Ω,O, γ), where the goal is to find a policy π
which maps from a Bayesian posterior distribution, i.e. the
belief b = p(s) over the set of states S, to a discrete action
a ∈ A. The transition model T is a discrete time probabilistic
mapping from one state to the next given an action, p(s′|s, a),
after which the robot is rewarded according to R(s, a).
During policy execution, the robot receives observations
o ∈ Ω according to observation likelihood O = p(o|s).
For infinite horizon planning problems with discount factor
γ ∈ [0, 1), the optimal policy π[b(s)] → a maximizes the
expected future discounted reward: E[

∑∞
k=0 γ

kR(sk, ak)].
The primary challenge arising from casting our motivating

problems as POMDPs lies in the ability of the human to
modify the models T and O online in an unmodeled ad-hoc
fashion via the sketch interface. These modifications can hap-
pen rapidly, and might change large swathes of each model
with a single sketch. Bayes-Adaptive POMDPs [28] allow
POMDPs to learn the parameters of T and O, but require
gradual changes to their parameters and static T and O.
In the motivating problems, A and O change unpredictably
with new sketches. This issue renders “full-width” offline
point-based POMDP planners [29], [30] inapplicable, as they
require models of how T ,O and Ω change.

Online POMDP approaches [31], which eschew the pro-
cess of pre-solving the policy prior to execution in favor of
interleaving steps of policy execution and search, have suc-
cessfully been used to address large observation spaces [32],
continuous state spaces [33], and more recently, dynamic
ad-hoc models [24]. These algorithms make use of a ’black-
box’ generative model, requiring only the ‘current POMDP
problem’ at time of execution, making them good candidates
for solving problems with dynamic model uncertainty.

Cast as a POMDP, the motivating problem easily incor-
porates information gathering actions. Unlike the Value-of-
Information [8] and Human Observation Providers POMDP
[9] frameworks, which relied on static environments and
fixed codebooks regarding state information, our problem re-



quires the ability to dynamically encode previously unknown
environments and leverages multiple types of human input.

C. Formal Problem Statement

A mobile robot with continuous state sr attempts to
localize and intercept a target with continuous state st in
some search environment. The joint state space is [sr, st]

T =
s ∈ S = RN . The human sensor has full knowledge of sr at
all times as well the belief b(st) = p(st|o1:kh , o1:kr , a1:k−1),
which is the updated Bayesian posterior pdf given all obser-
vations made by the robot o1:kh and the human o1:kh through
time k. Both sr and b(st) are displayed over a terrain map,
which dictates transition model p(s′|s, a) at each point space
according to hazards and open areas. Action space A is a
combination of movement action made by the robot which
affect its state Am and query actions which pull information
from the human Aq . The robot initially holds a uniform
p(s′|s, a), ∀s, which the human can update by sketching and
labeling areas of interest on the map. Each sketch creates an
enlarged action space A′ such that A ⊂ A′, where each new
action is a possible query to the human regarding the relative
location of st with respect to the new sketch.

III. METHODOLOGY

A. Human Querying and Data Fusion

The human can act as either: a passive semantic sensor,
which volunteers information without request whenever pos-
sible; or as an active semantic sensor, which can be queried
by the robot to provide information on request. Here we
assume the human will respond to queries based on a static
a priori known responsivness value (ξ), such that, for all
human observations oh at all times, p(oh 6= None|s) = ξ.
This leads to an additional observation oh = None ∈ Ωh.
We also assume the human has a static a priori known
accuracy η, such that, for all human observations oh at all
times, p̄(oh = j|s) = p(oh = j|s) · η, where probability is
redistributed to the “inaccurate” observations,

p̄(oh = (k 6= j)|s) = (1)
1

|Ω| − 1
p(oh = j|s) · η · p(oh = (k 6= j)|s)

The notation p̄(o|s) and p̄(s′|s, a) denote models used during
online execution, in contrast to the nominal distributions
p(o|s) and p(s′|s, a). This parameterization of accuracy
ignores similarity between any two observations. While this
simplifies implementation and allows comparative testing
of accuracy levels, other models may yield more realistic
results; e.g. linear softmax model parameters [23], [24],
[34], can be used to determine the likelihood of mistaking
semantic labels given s.

We focus here on humans as active sensors. This requires
an explicit dependency on actions to be included in the
observation model, as well as additional actions which trig-
ger this dependency. Just as POMDP observations can be
typically modeled as o ∼ p(o|s), o ∈ Ω, human responses
to robotic queries a ∈ Aq can be modeled as oh ∼
p(oh|s, aq), aq ∈ Aq, oh ∈ Ωh. These additional query

Fig. 3: Left: Graphical model for Golf Course POMDP;
Right: Graphical model for the Road Network POMDP.

actions can be introduced into A in one of two ways. Casting
them as exclusive options, where either movement or a query
can be pursued but not both, minimally expands the action
space to the sum of queries and movements, A = Am +Aq .
But this can be limiting in situations which benefit from
rapid information gathering about models and states together.
Instead, we cast the queries as inclusive actions, in which
every time step permits any combination of movement and
query, A = Am ×Aq . This can drastically increase the size
of the action space, but allows rapid information gathering.

The robot’s on-board sensor produces a single categorical
observation per time step or , which must be fused with oh.
We assume the robot’s sensor is independent of the human
observations given the state such that,

p(s|or, oh) =
p(s)p(oh, or|s)
p(or, oh)

∝ p(s)p(or|s)p(oh|s) (2)

Fig. 3 summarizes the probabilistic dependencies for the
POMDPs describing the Fig. 2 search problems. While all
observations are state dependent, some now depend on ac-
tions chosen by the policy. Also, query actions have no effect
on the state, and are pure information gathering actions. In
these new POMDPs, a combined action might be “Move to
North, and Ask human if target South of Lake”, which may
return a combined observation of “Target is Far from me,
and human says target is not South of Lake”. So in this case
a = {North, South/Lake}, and o = {Far,No}.

B. Online Planning and Model Revision

POMDP policy approximations typically assume a fixed
problem during policy search and execution. This limits their
ability to find policies in poorly modeled but learnable envi-
ronments. A human sensor can address this shortcoming: in
addition to answering queries about target states, the human
can help edit the POMDP by providing model-related infor-
mation while requiring minimal expert knowledge. Uncertain
state transition models T due to partial terrain information
can be updated with soft information during execution. The
spatial location of alterations to T can also be labeled as
semantic references for new soft data options. However, this
newly available information creates its own issues.

Most POMDP solvers make two key assumptions on
transition models. First is that the model is temporally static

pk+1(s′|s, a) = pk(s′|s, a),∀k (3)
p̂k+1(s′|s, a) = p̂k(s′|s, a).



where p̂k(s′|s, a) is the internal transition function in use
by the robot at time k, in contrast to the true underlying
(unknown) model pk(s′|s, a). The second is that the model
being used by the solver is identical to the model being used
during the execution of the policy, p̂k(s′|s, a) = pk(s′|s, a).

The first assumption is particularly important for infinite
horizon offline solvers, where Bellman-backup steps generate
approximations of the value function agnostic of whichever
timestep a reward may be achieved on. Finite horizon offline
and online solvers can cope with this limitation [31], [35], but
require that even non-stationary transition models be known
for all times prior to generating a policy.

Here we propose a sketch-based method for the human to
modify the POMDP during execution. Sketches made by the
human are labeled as landmarks within the map contained
within S. In addition to growing the possible query action
space by a set amount for each sketch, each labeled spatial
sketch area gives the human the opportunity to describe
terrain features or likely motion parameters in that area.

For T , we assume the underlying model isn’t changing,
while the robot’s understanding of it might, i.e.

pk+1(s′|s, a) = pk(s′|s, a) (4)

p̂k+1(s′|s, a)
?
= p̂k(s′|s, a)

However, we make no assumption on the nature of this
understanding change nor the timing. For the observation
model however, both the true and internal model change
when given a new sketch. All of these model changes imply
that the robot must solve a different but related POMDP
after each human sketch. With this in mind, we next consider
viable approximations for solving such POMDPs.

The Partially Observable Monte Carlo Planning (POMCP)
algorithm proposed in [31] is particularly promising due
to its use of generative ‘forward’ models and online any-
time characteristics. While the original implementation of
POMCP uses an unweighted particle filter for belief up-
dates, the authors of [36] note that, for problems with even
moderately large A or O, a bootstrap particle filter allows
for more consistent belief updates without domain specific

Algorithm 1 Planning with Human Model Updates
1: Bk = Particle Set(Size = N)
2: α(s) = Discrete Grid()
3: repeat
4: [am, aq] = POMCP(B) (Ref. [31])
5: s ∼ pk(s′|s, am) (unknown state)
6: or ∼ p̄k(or|s) (robot sensor observation)
7: oh ∼ p̄k(oh|s, aq) (human query answer)
8: Bk+1 = Bootstrap Filter(Bk, am, aq, or, oh)
9: if New Human Sketch (W) then

10: V = W.Value, (human assigned state modifier)
11: L = W.Label, (human assigned label)
12: for s ∈W do
13: α(s) = V
14: end for
15: Ωk+1 = Ωk ∪ (L× [Near,E,W,N, S])
16: end if
17: until Scenario End

particle reinvigoration. This weighted particle filter approach
coincidentally also provides a solution to the dynamic mod-
eling problem. Each belief update is carried out using the
most up-to-date model, while changes to the model only
affect future timesteps. As model alterations require solving
a different POMDP after each sketch, this approach allows
each planning phase to be treated as the start of a brand new
POMDP solution. Our procedure for carrying out POMCP
planning while handling dynamic model updates from a
human is detailed in Algorithm 1. Certain aspects of this
procedure, such as our use of a discretized grid to store
transition model modifiers (α) or the semantic observations
included with each sketch (described in more detail in the
next section), readily adapt to more general problems.

C. Multi-Level Active Information Gathering
To accommodate stochastic switching dynamics, it is

generally convenient to include mode states m as shown in
Fig. 3 (right) for the Road Network problem, which dictate
alterations to the target state transition models,

s̄ = [s,m]T ,m′ ∼ p(m′|m) s′ ∼ p(s′|s, a,m′). (5)

This additional discrete state variable can be easily handled
by POMCP and other Monte Carlo tree search approxima-
tions, which rely on generative black box simulators and
support edits to T and O. Offline approximations based on
switching-mode POMDPs [37] can also accommodate hybrid
dynamics, but require stationary models. Such hybrid model
extensions also open the door to active semantic queries and
specific human observations oh pertaining to m, which can
greatly enhance the Bayesian belief for m.

With this modification to the generative model, the proba-
bility of different state transition models being in effect can
be explicitly represented via particle approximation as

P (m = x) =
1

N

N∑
n=0

1(mn = x), (6)

where 1(mn = x) is an indicator function applied to the
mode of particle (n). This allows queries to be constructed in
the same way as those presented in Section III-a, but referring
only to the mode segment of the state vector s̄. For instance,
in Section IV-b we consider a problem where the modes
governing the transition probabilities represent whether or
not a target is on a road. Thus, actions can be taken such as
“Ask the human if the target has gone off-road”, which can
improve the robot’s estimated belief of the target’s speed.
In this way, the model changes brought about by queries
are anticipated by the solver, and don’t imply the need to
solve a different POMDP. For human responses modeled as
p(oh|m), the belief update equation becomes

p(s|or, oh) =
∑
m

p(s,m|or, oh) (7)

=
∑
m

p(s|or, oh,m)p(m|or, oh) =
∑
m

p(r|s)p(m|s)p(h|m)

p(h)p(r)

With the mode treated an additional state variable as in Equa-
tion 5, this equation reduces to Equation 2. The bootstrap



particle filter used in Algorithm 1 approximates this belief
update through use of weighted particles.

IV. DYNAMIC TARGET SEARCH APPLICATIONS

We present the results of two simulated scenarios depicted
in Fig. 2 in which the robot attempts to localize and intercept
a moving ground target. In the first ‘Golf Course Problem’,
an unmanned ground vehicle (UGV) pursues the target in
an unmapped area with unknown terrain features for which
the state transition dynamics are unknown a priori. In the
second scenario, an unmanned aerial system (UAS) pursues
a ground based target in a large road network; the target
moves according to a two-layer HMM as shown in Fig. 3
(right), where m indicates whether the target is road-bound.

A. Golf Course Problem: Search in Unknown Environment

The golf course shown in Fig. 2 is the underlying envi-
ronment. The course contains numerous regions which either
slow or speed movement through them by ground vehicles.
We model these differences through the use of a modifier
variable (α) applied to the nominal transition model. The
UGV is initialized with a uniform value of (α) across the
state space. The UGV’s human teammate, for cases wherein
human assistance is provided, is able to modify the UGV’s
understood value of (α) through sketches. Here we assume
the human’s provided modifiers are perfectly accurate even
if their observations about their sketches aren’t necessarily.
Expected transitions for the UGV E[s′], with ∆(a) being
the expected move resulting from an action, are given as
E[s′] = s+ α∆(a), α = [Water : 0.05, Sand : 0.5,Fairway :
1.5,Green : 2, otherwise : 1]. The UGV has a nominal speed
of 5 m/s in any of the 4 cardinal directions, while the target
nominally moves at 2 m/s using a nearly constant velocity
(NCV) kinematic state model [38].

Observations made by the robot’s on-board proximity
sensor have three possible values, either indicating that the
target is “Far”, “Near”, or “Captured”, all with true positive
rates of 98%. The robot’s field of view, and thus the “Near”
observation, extend out to 15m while distances beyond are
tagged “Far”. Capture is declared at a distance of 7.5m.

In the “Human” test case, a simulated human was used
to provide sketches and linguistic observations using these.
Sketches were drawn from a list of 15 pre-drawn sketches,
focusing on areas of interest such as water, sand, and greens.
For each of the 100 simulated runs, the human provided a
sketch at the beginning of the run, and added an additional
sketch every 20 time steps up until the end of the run at
100 time steps. Each time step corresponded to 2 seconds,
which was the planning time allocated to the POMCP solver.
Using the observation model described in Section III-a, the
simulated humans were assumed to have an accuracy and
responsiveness of η = ξ =95%. The queries made by the
robot were constructed in binary fashion similarly to those
in [23], [24]: questions aq took the form of queries about
the target position relative to cardinal directions for each
sketched map landmark, e.g. “Is the target east of Fairway
1”, with potential replies oh ∈ [Y es,No,None].

Golf Course Problem Results
Method Mean TTC Standard Deviation
Non-human 34.16 ±23.97
Non-human Informed 31.22 ±22.04
Human 25.46 ±15.78

TABLE I: Golf Problem Comparison of simulation TTC

Road Network Problem Results
Method Mean TTC Standard Deviation
Non-human 39.43 ±23.74
Human 30.45 ±23.28

TABLE II: Road Network Comparison of TTC

The UGV gains a reward of 100 for capturing the target,
which requires being within 7.5m, and incurs a small cost of
1 for asking questions of the human. This reward function
encourages fast target capture. Since POMDP policies max-
imize the cumulative reward utility resulting from R(s, a)
and thus seek to achieve a real-world goal encoded by the
resulting utility, we report the results of our simulations in
terms of our goal metric, Time to Capture (TTC), which is
the first timestep the UGV is within 7.5 meters of the target.

Three deployment cases are evaluated to determine the
effect of introducing human sketches and observations. In
the first “Non-human” case, the UGV is given a uniform α
modifier over the map. The “Human” case gives the UGV a
human, capable of providing both sketches and observations
in response to requests from the UGV. The final case, “Non-
human Informed”, gives the UGV the true α values across
the state space. The TTC results are shown in Table I.

In order to examine the effects of differing levels of human
accuracy η and responsiveness ξ, each variable was tested
with select values ranging from 30% to 99%. The number
of questions asked as a percentage of all actions, as well as
the TTC metric for each test, are shown in Figure 5. η and ξ
here are known and static for the robot. Additional research,
possibly extending the HOP-POMDP framework [9] or [39]
could allow the robot to learn these online.

B. Road Network Problem: Search with Switching Dynamics

In this scenario, the target moves through the search area
in one of two modes, m0 = on-road and m1 = off-road.
An on-road target has a chance to transition to off-road,
and will follow an NCV model until it encounters another
road. Thus the target dynamics in the continuous state space
s are conditionally constrained with respect to the mode
m. When available, the human is given a binary query
asking “Is the target on the road”, which yields response
oh ∈ [Y es,No,None] in accordance with η and ξ. The
reward, robot observation models, and human responsiveness
and accuracy statistics are otherwise identical to the ‘Golf
Course’ scenario presented above. Transitions are modeled
with a uniform α = 1 across the space.

The road-network scenario was tested in cases with and
without a human collaborator answering questions pertaining
to the target mode. As in the ‘Golf Course’ problem, the true
simulated human’s accuracy and responsivity are η = ξ =
95%. The TTC results are displayed in Table II.



Fig. 4: Average Root Mean Squared Error for Golf Course
problem (vertical lines: average TTC per method).

Fig. 5: Given humans with various levels of accuracy and
responsivity, Left: The number of questions asked by the
robot as a percentage of all actions; Right: The average TTC

C. Discussion of Results

In the Golf Course problem, the human-robot team was
able to capture the target faster on average than the robot
alone,(p < 0.05). A major factor in their success was the
ability of the simulated human to rapidly improve the robot’s
estimate of the target’s location, as shown in Figure 4. A
better estimate leads to more effective querying and planning,
with in turn produce better estimates and faster capture times.

When testing differing η and ξ values in Fig. 5, the
most accurate and responsive humans were asked the fewest
questions and achieved the best average TTC. Similarly,
the simulated humans with lower η and ξ received more
questions. The robots knowledge of η and ξ indicates it
adjusts the frequency of questions to obtain a similar quality
of target state estimate regardless of human. Furthermore,
these tests support our claim that a human-robot team gen-
erally outperforms a lone robot, despite introducing increased
complexity. In 89% of these tests, the TTC was lower than
that achieved in the Non-human case from Table I, and the
combinations of η and ξ which did not surpass the ‘Non-
human’ case still carried similar performance. This suggests
the ’plug-and-play’ nature of our framework allows it to
make the best of a poorly suited human as well as take
advantage of a highly useful one – and in the worst case
see comparable performance with a more complex problem.

In the Road Network problem, the human was able to pos-
itively impact the robot’s search even without the ability to
provide semantic data about the target’s continuous state. As

Fig. 6: Example of robot’s ability to estimate whether target
is bound to road network, with and without human input.

indicated in Table II, the option to query a human about the
current mode of the target, i.e. whether or not it was bound
to the road-based dynamics model, resulted in significantly
lower TTC, (p < 0.05). This is demonstrated by Fig. 6,
where the robot’s estimate of the target’s mode is clearly
superior when the human is available. The robot is able
to periodically constrain its estimate of m by querying the
human, and maintain a better understanding of the target’s
future movements. Thus, the use of a human to measure an
indirect variable such as the target’s mode of travel allows
the robot to more effectively carry out its task.

V. CONCLUSION

We proposed and demonstrated a novel approach to multi-
level active semantic sensing and planning in human-robot
teams in unknown dynamic environments. Our solution ex-
tends online POMDP planning frameworks to incorporate
semantic soft data from a human sensor about the location
of a tracked target as well as relevant terrain information.
Such information is propagated from human to robot through
the use of a sketch based, natural language interface. This
approach provides a novel formulation of a POMDP with a
“human-in-the-loop” active sensing model, as well as innova-
tions to the use of soft-data fusion as applied to higher level
modal information. We demonstrated our approach on two
example problems. The first showcased the improvements
a queryable human can bring to target search problems,
while the second demonstrated that the incorporation of
human information even with regard to higher level mode
observations can improve a robot’s target search ability.

Moving forward, research will examine the effect of
inaccurate or incomplete sketches on the part of the human.
Pairing the robot with a visual object detector has potential
to allow feedback to ensure that the robot’s perception of the
object or region is consistent with a sketch. Additionally, a
3D physics driven simulated search environment for large
scale robotics testing is being developed in parallel with our
interface to extend and test the ideas contained in this work
using real humans in realistic search tasks. Hardware imple-
mentations with a UAS and live human are also ongoing.
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