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Optimal Continuous State POMDP Planning With
Semantic Observations: A Variational Approach

Luke Burks , Ian Loefgren, and Nisar R. Ahmed

Abstract—This article develops novel strategies for optimal plan-
ning with semantic observations using continuous state partially
observable Markov decision processes (CPOMDPs). Two major
innovations are presented in relation to Gaussian mixture (GM)
CPOMDP policy approximation methods. While existing methods
have many desirable theoretical properties, they are unable to
efficiently represent and reason over hybrid continuous-discrete
probabilistic models. The first major innovation is the derivation of
closed-form variational Bayes GM approximations of point-based
value iteration Bellman policy backups, using softmax models
of continuous-discrete semantic observation probabilities. A key
benefit of this approach is that dynamic decision making tasks can
be performed with complex non-Gaussian uncertainties, while also
exploiting continuous dynamic state-space models (thus avoiding
cumbersome and costly discretization). The second major inno-
vation is a new clustering-based technique for mixture condensa-
tion that scales well to very large GM policy functions and belief
functions. Simulation results for a target search and interception
task with semantic observations show that the GM policies resulting
from these innovations are more effective than those produced by
other state-of-the-art policy approximations, but require signifi-
cantly less modeling overhead and online runtime cost. Additional
results show the robustness of this approach to model errors and
scaling to higher dimensions.

Index Terms—AI reasoning methods, Gaussian mixtures (GMs),
hybrid systems, partially observable Markov decision processes
(POMDPs), sensor fusion, target search and localization.

I. INTRODUCTION

MANY applications of planning under uncertainty require
autonomous agents to reason over outcomes in continu-

ous dynamical environments using imprecise but readily avail-
able semantic observations. For instance, in search and tracking
applications, autonomous robots must efficiently reacquire and
localize mobile targets that remain out of view for long periods
of time. Planning algorithms must therefore generate vehicle
trajectories that optimally exploit “detection” and “no detection”
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data from onboard sensors [1], [2], as well as semantic natural
language observations that can be provided by human supervi-
sors [3]. However, it remains quite challenging to achieve tight
optimal integration of vehicle motion planning with nonlinear
sensing and non-Gaussian state estimation in large continuous
dynamic problem domains.

In recent years, a variety of techniques based on partially
observable Markov decision processes (POMDPs) have been
developed to address these issues. These include methods
that preserve the continuous dynamical nature of the problem
through suitable function approximations, rather than discretiz-
ing the continuous state space. Of particular interest here are
approximations based on Gaussian mixture (GM) models, which
flexibly represent complex policy functions and non-Gaussian
probability density functions (PDFs) [4], [5]. These techniques
enable closed-form manipulation and recursions for produc-
ing accurate optimal POMDP policy approximations. However,
these state-of-the-art methods suffer from two major drawbacks
when dealing with semantic observations. First, they rely on
computationally expensive and nonscalable hybrid probabilistic
likelihood models for capturing the relationship between dis-
crete semantic sensor data and continuous states. Second, these
methods rely on computationally expensive GM condensation
techniques to maintain tractability. These issues greatly increase
modeling and computational effort, and thus significantly limit
the practical applicability and scalability of GM-based POMDP
approximations to continuous state decision making problems.

This article presents two technical innovations to directly
address these issues. The first novel contribution is an effi-
cient variational Bayes (VB) GM POMDP policy approximation
method that allows semantic sensor observations to be accurately
yet inexpensively modeled by generalized softmax likelihood
models (which otherwise lead to intractable policy and PDF
updates for continuous POMDPs). This method is further ex-
tended to account for continuous dynamic state-space models.
The second novel contribution is the development of a fast
and scalable two-stage GM condensation technique for large
mixtures. Application of the K-means algorithm to precluster
mixands, followed by a Kullback–Leibler divergence (KLD)-
based condensation of each cluster and recombination of the
resulting mixtures, leads to significantly faster condensation
overall with minimal loss of accuracy. This technique is tested
across a range of parameters including the dimensionality, initial
size, and final size of the mixture. While many different distance
and information theoretic divergence measures could be used to
partition GM PDFs, the Euclidean distance of mixand means
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strikes a balance between speed and accuracy that scales well to
higher dimensional problems. Simulation results of VB GM pol-
icy approximations are provided on a dynamic target search and
interception task, showing favorable performance comparisons
to other approximation methods as well as robustness to model
error. Finally, simulation results for a multirobot localization
and planning problem with semantic sensing demonstrate the
scalability of the VB policy approximations in higher dimen-
sional settings, where other offline policy approximations are
impractical to use.

This article significantly extends the theory and results pre-
sented by Bai et al. in [6]. Specifically, this article provides
a more detailed and generalized derivation of the VB GM
policy approximation approach for linear-Gaussian dynamical
systems, and provides a more rigorous analysis of the clustering-
based GM condensation algorithm. This article also provides
additional comparisons to state-of-the-art POMDP policy ap-
proximations, assesses the robustness of the VB GM policy ap-
proximation to model errors, and shows that the approach scales
well to high-dimensional problems. Though outside the scope of
this article, the methods developed here have also been adapted
and deployed in hardware for collaborative human–robot target
search and interception [7].

II. BACKGROUND AND RELATED WORK

A. Motivation and General Problem Description

This article is motivated by dynamic target search and in-
terception tasks. However, the concepts developed here readily
generalize to other problems involving decision making under
uncertainty in continuous dynamic state spaces, e.g., mobile
robot self-localization and motion planning [8]–[10]; inventory
control [11]; unmanned aircraft collision avoidance [12]; pop-
ulation dynamics modeling [13]; multitarget radar scheduling
[14]; robot arm motion planning and coordinated grasping-based
manipulation [15]–[18]; and autonomous driving [16], [19].

The dynamic target search and interception problem consid-
ered here consists of a single autonomous mobile robot platform
(the seeker), which must seek out, localize, and capture another
single mobile entity (the target). The seeker and target dynamics
are each described by a finite-dimensional continuous state-
space dynamics model. The seeker robot receives a limited set
of noisy sensor observations and can use these to make informed
decisions about its own movements, which in turn lead to new
future observations and possible interception of the target.

It is assumed that the seeker has perfect (or near-perfect)
knowledge and observability of its own state, although its actions
may result in uncertain state transitions. This can be relaxed to
allow for uncertain seeker states, though it is assumed regardless
that the seeker states are observable and the search environment
is known, such that obstacles and other known hazards are
mapped ahead of time. The seeker also has a (possibly imperfect)
state-space model of the target, as well as an initial prior belief
over target states. The seeker’s sensor observations consist of
semantic data types that are generated in the continuous space
as discrete categorical observations, i.e., positive information
in the form of “target detected” and negative information in

the form of “no target detected” reports from a visual sensor.
Continuous sensor observations may also be present (e.g., rel-
ative range and bearing measurements), though the seman-
tic/discrete observations are the distinguishing feature and focus
for this article.

Given this setup, the seeker must reason about how to intercept
the target in some optimal sense. This article focuses on the
problem of safe minimum time capture; that is, the seeker must
intercept the target as quickly as possible without colliding with
any known obstacles in the environment (“pop-up” hazards and
imperfect maps are not considered). Alternative performance
measures could be optimized, e.g., maximum probability of
capture, minimum mean squared error target localization er-
ror, minimum power consumption, etc. Regardless, optimal
planning requires the seeker to map the target’s state, its own
state, and its set of possible actions and observations to the
maximization of an overall utility for some planning horizon.

Previous work in controls, data fusion, and robotics has expan-
sively addressed target search and tracking and interception for
continuous spaces [2], [20]–[22]. However, optimal planning un-
der uncertainty in continuous spaces with semantic observations
remains quite challenging. The hybrid probabilistic nature of this
application present challenging data fusion and control problems
with highly non-Gaussian uncertainties, which are not present
in other approaches that rely on continuous measurements and
Gaussian uncertainties. In such a problem, the typical approach
is to apply the separation principle, relying on the observability
of the state space and properties of the sensor and dynamics
models to ensure Gaussian uncertainties over the long term.
However, the separation principle is not guaranteed to produce
optimal results for planning under uncertainty with semantic
observations, since these are typically nonlinear and can lead to
highly non-Gaussian uncertainties. Fusion approaches applied
to this problem must be able to accommodate arbitrary uncer-
tainties using non-Gaussian sensor and dynamics models.

B. Semantic Sensing and Data Fusion

Sensors typically provide continuous numeric observations,
such as a range or bearing measurement. However, some sensors
provide categorical observations, e.g., the output of a visual
object detection algorithm that reports when an object is in a
camera sensor’s field of view, or a human-generated report that
a target is west of a landmark. Such semantic observations map to
discrete regions in a continuous space, where the regions are not
necessarily exclusive. For example, placing a target at the edge
of a camera’s view could generate either a positive (true detec-
tion) or negative (false miss) observation from the identification
algorithm, with some probability for each outcome. When these
probabilities are cast in a likelihood model, they provide useful
negative information in Bayesian reasoning for target tracking
[23] [24], as well as probabilistic generative models of semantic
observations for planning problems [25].

In collaborative human–robot search problems, nonrobot
sensors such as surveillance cameras, unattended ground sen-
sors, or human teammates who generate natural language data
can be modeled as semantic data sources [3], [26], [27]. The
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seeker robot can then augment its decision making process by
incorporating actions to actively point and poll these sensors
in a closed-loop manner, resulting in a fully integrated hybrid
sensing and planning problem. Kurniawati et al. [28], [29] also
considered this problem from the standpoint of myopic value of
information (VOI) reasoning to determine whether querying a
particular sensor will result in a better decision in the long run
(i.e., improved utility), despite the cost of using the sensor and
regardless of the sensor’s observation. These approaches require
online optimization and inference for decision making within a
probabilistic graphical model, and hence decouple the planning
and sensing problems to ensure computational tractability. The
approach described in this article can be used to solve for
combined motion planning and human querying policies offline,
thus avoiding high computational cost and achieving tighter
integration of planning and sensing with complex uncertain-
ties. Application to the full semantic active sensing problem
with human–robot teams is not treated here, but has been
implemented and examined in related work [7].

Semantic data fusion has major consequences for online state
estimation and representation. The negative information carried
by such data can change the state belief in highly nonlinear
ways via the “scattering effect” [21]. This temporarily increases
the differential entropy of a continuous target state PDF
by introducing non-Gaussian features like holes, skewness,
and multiple peaks. Yet, many data fusion and estimation
approaches rely heavily on Gaussian state PDFs and likelihood
models; these can lose significant information relative to the true
target state distribution and, thus, lead to suboptimal closed-loop
search/localization policies. Extensions of these methods gener-
ally rely on approximations of PDFs and observation likelihoods
via normalized and unnormalized GM functions, respectively
[4], [30]. These methods exploit the fact that, for recursive
Bayesian updates, the product of GM state prior distributions
and GM semantic likelihood functions is always guaranteed
to be another GM. It is fairly well-established that normalized
GMs provide highly flexible models for non-Gaussian state es-
timation, especially if GM condensation techniques are applied
to control mixand growth across successive mixture operations
[31], [32]. However, the number of parameters required for
unnormalized GMs to model semantic data likelihoods in
two or more continuous state dimensions scales quite poorly
and quickly becomes computationally impractical for optimal
planning. Previous work also showed that semantic observations
could be modeled via softmax functions and fused into
(normalized) GM PDFs for recursive Bayesian state estimation
[3], [27]. This concept is significantly extended here for updating
unnormalized GM policy functions, which also accounts for
the tight coupling between optimal sensing and planning.

C. Continuous State Space Planning Under Uncertainty

Dynamic target search and interception problems feature
many types of stochastic uncertainty, including dynamic pro-
cess noise and sensor errors. Planners based on POMDPs are
well-suited to handle such uncertainties. POMDPs can theo-
retically support arbitrary dynamics, state beliefs (probability

distributions), and sensor models, and thus encode a broad range
of general optimal decision making problems when specified
with an appropriate reward function. POMDP policies can op-
erate on arbitrary target state PDFs, as long as Bayesian belief
updates to the target state PDF are carried out. POMDPs also nat-
urally account for VOI when integrated with sensor tasking and
information gathering actions. In practice, however, POMDPs
can be unworkable due to the curse of dimensionality in discrete
spaces and problems with tractability and representation in
continuous spaces. The key challenge is the need to solve a
Markov decision process (MDP) over the state belief space to
obtain optimal decision making policies. This is impractical to
do exactly for all but the most trivial problems [33]. Hence, it is
generally necessary to resort to approximate solutions.

Discrete space POMDP approximations have been regularly
applied to target search and interception in prior work; bench-
mark applications include “tag/avoid” [34], [35] and laser tag
[36]. These approximations generate offline policies for target
interception based on a discretization of the continuous state
space. However, solving the belief space MDP for these prob-
lems carries the curse of dimensionality. For a problem with
N discrete states, policies must be found over the continu-
ous space of all N -dimensional probability distributions, and
thus become intractable to represent. Approximations based
on point-based value iteration (PBVI) [34] attempt to solve
the POMDP at specific “tentpole” beliefs, allowing the policy
to be interpolated at other beliefs [35], [37]. Other methods
attempt to compress the belief space onto a lower dimensional
manifold [38], approximate the POMDP as a single step MDP
with observations, e.g., Q-MDP [39], or use sample states to
build trees of potential histories [40] or scenarios [41] in an
online fashion during runtime. One of these online sampling
methods, partially observable Monte Carlo planning (POMCP)
[25], has also been adapted recently to continuous state
spaces [42].

Recent years have seen the development of several POMDP
policy approximations for continuous state, action, and obser-
vation spaces. These include a variety of belief representations,
and address the combination of continuous states with discrete
or continuous actions and observations.

Several continuous POMDP approximation approaches rely
on sampling methods [12], [43], in a similar or extended ver-
sion of the discrete space sampling approaches. Local policy
approximations for continuous observations have been applied
using Gaussian state beliefs [15], [44]. Belief space roadmap
techniques [45] have had success in computing policies as
paths directly in belief space for linear Gaussian systems with
continuous observations. Also related are policy approximations
inspired by linear-quadratic-Gaussian optimal control for mo-
tion planning under uncertainty [10], [46].

One family of continuous POMDP approximations extends
the PBVI discrete approach to continuous spaces [5]. This
approach uses GMs to approximate arbitrarily complex PDF
beliefs, state transitions, and observation likelihoods of the
POMDP. Beliefs are updated via the Gaussian Sum filter,
exploiting the fact that GMs become universal function approxi-
mators as the number of mixing components (mixands) becomes
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large. Bai et al. [4] and [47] extended this idea to address hybrid
dynamical systems, where the state transition model switches in
different parts of the state space.

These existing techniques are generally ill-suited for complex
planning problems in continuous state spaces with semantic
observations, such as the target search and interception task
considered here. Discretization-based methods lead to an unde-
sirable tradeoff between state space size and fidelity of system
dynamics, with larger spaces requiring coarse discretizations
that fail to capture subtleties in the target model. Online ap-
proximations require significant tuning effort and incur high
computational costs during execution, and even state-of-the-art
approaches such as POMCP [25] can suffer from suboptimal
worst case behavior and incur high regret [48]. Continuous state
policy approximations such as [4] and [12] have either relied
on the assumption of continuous observations (and are thus not
amenable to semantic observations), or constructed semantic ob-
servation likelihoods out of GMs. In the latter case, such models
are chosen to facilitate calculations and maintain closed-form
recursions, but drive up computation cost of policy searches
and scale poorly with state dimension N due to the number of
mixands required to accurately specify likelihoods. This article
develops a more scalable alternative likelihood representation
using softmax models for PBVI type policy solutions with
GM belief representations. Existing GM-based policy approx-
imations for semantic observations also make the simplifying
assumption that state transitions are independent of the current
state. This limits their applicability to dynamic search and
tracking problems, where target dynamics are often described by
flexible linear time-invariant (LTI) models. The research devel-
oped here relaxes this assumption and, thus, generalizes. Finally,
unlike Monte Carlo-based approximations [9] or learning-based
belief compression methods [38], the approach developed here
provides deterministic policy approximations for a given set of
“tentpole” beliefs.

D. POMDP Preliminaries

Formally, a POMDP is described by the 7-tuple (S,A, T,R,
Ω, O, γ), where: S is a set of states; A is a set of |A| discrete
actions a; T is a discrete time probabilistic transition mapping
from state st at time t to state st+1 at time t+ 1 given some
a; R is the immediate reward mapping over (s, a) pairs; Ω
is a set of observations o with No = |Ω| possible outcomes;
O is the likelihood mapping from states to observations; and
γ ∈ [0, 1] is a discount factor. An agent whose decision making
process is modeled by a POMDP seeks to maximize a utility
function defined by the expected future discounted reward:
E[
∑∞
t=0 γ

tR(st, at)], where st ∈ S is the state at discrete time t,
and at ∈ A. The expectation operator E[·] reflects that the agent
lacks full knowledge of st. It must instead rely on the noisy
process model T and observation modelO to update a Bayesian
belief function b(st) = p(st|a1:t, o1:t), which summarizes all
available information for reasoning about present and possible
future states. An optimal decision making policy π(b(st))→ at
must therefore be found for any possible belief b(st). Since
POMDPs are equivalent to MDPs over state beliefs b(st), exact

policies are impossible to compute for all but the simplest
problems.

Let s, s′ ∈ S be arbitrary states to which any (approximate)
policy must apply such that s �→ s′ viaT (i.e., for any t→ t+ 1).
One well-known family of techniques for computing approxi-
mate POMDP policies offline is PBVI [34]. These methods ap-
proximate π at a finite set of beliefs B0 = {b1(s), . . . , bNB

(s)},
for which explicit finite-horizon Bellman equation recursions
can be performed to obtain locally optimal actions in the neigh-
borhood of each bi(s), i = 1, . . . , NB . WhenS is a set of discrete
states with N possible outcomes, then b(s) ∈ RN such that
∑N
s=1 b(s) = 1. In this case, PBVI policies are represented by

a set Γ of Nα vectors α ∈ RN . The α vectors mathematically
represent hyperplanes that encode value functions for taking
particular actions at a given belief. The action a recommended
by the policy for a given b(s) ∈ RN is found as the action
associated with argmaxα∈Γ < α, b(s) >, where < · > is the
inner product. A number of methods exist for generating typical
sample beliefs, e.g., starting with a large set of bi(s) sampled
from the reachable belief space by random simulation [34]
(as in this article), or propagating a small initial belief set in
between recursive Bellman updates for α vector computations
to approximate optimal reachable belief sets [35].

When s is a continuous random vector such that s ∈ RN with
support S(S), it is natural to represent b(s) as a PDF, where∫
S(S) b(s)ds = 1. In such cases, continuous state POMDPs

(CPOMDPs) can be formulated by specifying T,R,O and α(s)
as suitable continuous functions over s. Although b(s) can
sometimes be represented by simple parametric models such as
Gaussian PDFs [49], b(s) is in general analytically intractable for
arbitraryT andOmodels that represent nonlinear/non-Gaussian
dynamics and semantic sensor observations. Therefore, b(s)
must also be approximated to derive a suitable setΓ ofα(s), such
that the (approximate) optimal PBVI policy π(b(s)) is defined
by the action associated with argmax〈α(s), b(s)〉.

E. Gaussian Mixture CPOMDPs

Finite GM models provide a general and flexible way to
approximate arbitrary functions f(s) of interest for CPOMDPs,
where

f(s) =

G∑

m=1

wmφ(s|μm,Σm) (1)

is a GM defined by G weights wm ∈ R0+, means μm ∈
RN , and symmetric positive semidefinite covariances Σm ∈
RN×N for the multivariate normal component PDF (“mixand”)
φ(s|μm,Σm), such that

∑G
m=1 wm = 1 to ensure normaliza-

tion when f(·) represents a PDF (this condition need not
apply otherwise). Bai et al. [5] showed the following: let
A describe a discrete action space with finite realizations a,
T = p(st+1|st, a) = p(s′|s, a) a Gaussian state transition PDF,
O = p(ot+1|st+1) = p(o′|s′) a GM observation likelihood,
and R(st, at = a) = ra(st) = ra(s) a continuous GM reward
function for each a, such that

T = p(s′|s, a) = φ(st+1|st +Δ(a),Σa) (2)
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O = p(o′|s′) =
Mo∑

l=1

wlφ(st+1|μl,Σl) (3)

R = ra(s) =

Mr∑

u=1

wuφu(st|μau,Σau) (4)

(whereφ(μ,Σ) is a Gaussian with meanμ and covariance matrix
Σ, and Δ(a) is the change in s = st due to action a); then
PBVI approximations to π(b(s)) can be found from closed-form
GM Bellman recursions for a finite set of GM functions α(st)
defined over some initial set of GM beliefs b(s). Note that
ra(st) is generally an unnormalized GM, with possibly negative
mixture weights such that

∫
S(st) ra(st)dst 	= 1. This allows

the CPOMDP to penalize certain configurations of continuous
states with discrete actions and thus discourage undesirable
agent behaviors. However, T must obey the usual constraints
for PDFs, such that

∫
S(st+1)

p(st+1|st, a)dst+1 = 1. The obser-
vation likelihood must also obey

∑
ot+1

p(ot+1|st+1) = 1 for
all st+1, where ot+1 is a discrete random variable describing a
semantic observation. As such, p(ot+1|st+1) can be a GM with
strictly positive weights but unnormalized weights (i.e., which
do not sum to 1) to model the conditional probability for ot+1’s
outcomes as a continuous function of st+1.

If the belief PDF b(s) is a J-component GM

b(s) =
J∑

q=1

wqφ(s|μq,Σq) (5)

then it is possible to arrive at a finite set Γn = {α1
n, α

2
n,

. . . , αNα
n } of α(s) functions for an n-step look-ahead decision

starting from b(s), such that

αin(s) =
M∑

k=1

wikφ(s|μik,Σik) (αin ∈ Γn) (6)

and the optimal value function V ∗n (b(s)) is approximately

V ∗(b(s)) ≈ max
αi

n

< αin, b(s) > (7)

< αin, b(s) >

=

∫

S(S)

[
M∑

k=1

wikφ(s|μik,Σik)
][

J∑

q=1

wqφ(s|μq,Σq)
]

ds

(8)

=

M×J∑

k,q

wikwqφ(μq|μik,Σq +Σik)

∫

S(S)
φ(s|c1, c2)ds (9)

=

M×J∑

k,q

wikwqφ(μq|μik,Σq +Σik) (10)

c2 = [(Σik)
−1 + (Σq)

−1]−1

c1 = c2[(Σ
i
k)
−1μik + (Σr)

−1μq]

which follows from the fact that the product of two Gaussian
functions is another Gaussian function. The n-step look-ahead

approximation is commonly in PBVI methods, where n is large
enough such that V ∗n does not change appreciably and, thus,
converges closely to the infinite horizon V ∗.

The αin ∈ Γn functions are computed using n-step pol-
icy rollouts, starting from NB different initial GM beliefs
B0 = {b1(s), . . . , bNB

(s)}. In each step, for each b ∈ B0, each
αin−1 function’s value is updated via the “Bellman backup”
equations, which perform point-wise value iteration to capture
the effects of all possible observations and actions on the accu-
mulated expected reward for future time steps 0, . . . , n. These
lead to the recursions

αia,j(s) =

∫

s′
αin−1(s

′)p(o′ = j|s′)p(s′|s, a)ds′ (11)

αin(s) = ra(s) + γ

No∑

j=1

argmax
αi

a,j

(< αia,j , b(s) >) (12)

where αia,j(s) is an intermediate function corresponding to a
value for a given action-observation pair (a, j) at step n, and
αin(s) is the discounted marginalization over all observations
of the intermediate function that maximizes the belief being
backed up, summed with the reward function. The action then
associated with each αin is the one, which maximized the value
marginalized over observations. Since p(st+1|st, a) is Gaussian,
p(ot+1|st+1) is a GM, and ra(st) is a GM for each action a, the
Bellman backups yield closed-form GM functions for αin(st).
Since the GM function for ra(st) can have negative weights and
values, it follows that each GM function αin(st) can also take
on negative weights and values.

This GM formulation scales well for continuous state spaces
whereN ≥ 2, and naturally handles highly non-Gaussian beliefs
b(s) stemming from nonlinear/non-Gaussian state process and
observation models in a deterministic manner. In contrast to
approximations that discretizeS to transform the CPOMDP into
a standard discrete state POMDP (and thus scale badly for large
N ), the complexity of the CPOMDP policy (i.e., the required
number of mixture terms for each αin(s)) depends only on the
complexity of the dynamics for the state belief PDF b(s), rather
than the number of continuous states N . Furthermore, since
the Bellman backup equations can be performed entirely offline
using a set of initial beliefsB0, the resulting policy induced by the
final set of αin(s) functions can be quickly and easily computed
online: as the agent obtains new state beliefs b(st)→ b(st+1)
over time via the standard Bayes’ filter equations (which yield
the general Gauss sum filter in this case)

b(st+1) ∝ p(ot+1|st+1)

∫

S(st)

p(st+1|st, a)b(st)dst (13)

the optimal action a to take for b(st+1) is the one associated
with the αin ∈ Γn satisfying argmaxαi

n
< (αin), b(st+1) >.

F. Limitations for Hybrid Continuous-Discrete Reasoning

The likelihood model O = p(ot|st) must describe a valid
hybrid (continuous-discrete) probability distribution, such that∑
ot
p(ot|st) = 1 ∀s ∈ S(S). For each possible outcome ot,

this is typically modeled by an unnormalized GM [5],



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 1. Model for two colinear robots, one a cop and the other a robber. The cop’s robber detection observation likelihood can be modeled as a 9 parameter MMS
model (b), or a 624 parameter GM model (c). (a) Colinear model. (b) Softmax likelihood model. (c) GM No Detect.

p(ot|st) ≈
∑Lo

lo=1 woφ(st|μlo ,Σlo), such that
∑
ot
p(ot|st) ≈

1 everywhere. Such models preserve the closed-form Bellman
updates required for PBVI, but are difficult and labor intensive
to specify. In particular, for state dimension N ≥ 2, Lo must
be very large for each possible ot outcome to ensure that the
normalization requirement is satisfied for all st and that the
desired probabilities p(ot|st) are modeled accurately. This effec-
tively turns p(ot|st) into a “soft grid” discretization and severely
restricts the scalability of GM policy approximation.

Another issue is the fact that the number of multiplications
and summations in each step of the Bellman recursions (11),
(12) grows with the number of resulting GM components from J
mixands in b(s) andKmixands inαin(s) toK × J mixands. The
number of terms in αin(s) also grows with each summation over
No observations. GM condensation methods are thus needed to
control the size of the policy functions αin(s) between backup
steps for offline policy approximation, as well as the size of
the state belief GM PDF b(s) between Bayes’ filter updates for
online policy evaluation. Bai et al. [4], [5] proposed different
general methods for condensing GM functions in CPOMDP
policy approximations, although in principle any number of GM
merging algorithms developed in the target tracking and data
fusion literature could also be applied [31], [50]. However, for
large-scale problems such as dynamic target search and tracking,
it is not uncommon for offline Bellman backups and online pol-
icy evaluations to rapidly produce hundreds or even thousands
of new mixands in just one backup step or Bayes’ filter predic-
tion/measurement update. As discussed in Section III-B, existing
GM merging methods tend to be computationally expensive and
slow for such large mixtures. This issue is exacerbated by use of
dense unnormalized GM models for p(ot|st), which introduce
additional policy approximation errors if normalization is not
guaranteed for all st ∈ S(S). Offline policy approximation and
online policy evaluation thus become expensive.

Existing GM-based CPOMDP approximation methods also
use simplified random walk state transition models p(st+1|st, a)
where st+1 is modeled as the result of shifting st by a specific
distance in S(S) for a given action a plus some additional ran-
dom noise component. It is thus not obvious how these methods
can be used with more sophisticated state dynamics models,
e.g., kinematic linear nearly constant velocity (NCV) models

commonly used in dynamic target tracking [51], where the
position components of st+1 depend on velocity components in
st. This severely limits the applications for GM-based CPOMDP
approximations.

G. Target Search Example With Semantic Observations

Consider a two-state CPOMDP in which an autonomous
robot “cop” attempts to localize and catch a mobile “robber,”
where each moves along a single dimension [see Fig. 1(a)].
Here, S = R×R consists of N = 2 bounded continuous ran-
dom variables at each discrete time t, st = [Copt,Robt]

T ,
Copt ∈ (0, 5), Robt ∈ (0, 5), where Cop and Rob denote the
state variable for the respective agents. The robber executes a
random walk

p(Robt+1) = φ(Robt+1|Robt, 0.5). (14)

The cop chooses a movement direction from among three noisy
actions A ∈ {left, right, stay}, such that

p(Copt+1|Copt, left) = φ(Copt+1|Copt − 0.5, 0.01) (15)

p(Copt+1|Copt, right) = φ(Copt+1|Copt + 0.5, 0.01) (16)

p(Copt+1|Copt, stay) = δ(Copt+1,Copt). (17)

The cop is rewarded for remaining within a set distance of the
robber’s position, and penalized otherwise

r(|Robt − Copt| ≤ 0.5) = 3 (18)

r(|Robt − Copt| > 0.5) = −1. (19)

The cop receives binary semantic observa-
tions from an onboard visual detector, ot ∈
{“robber detected”, “robber not detected”}. Fig. 1(b) and (c)
shows unnormalized GM models for the semantic “detection”
and “no detection” likelihoods, which are respectively
parameterized by 8 and 200 isotropic Gaussian components.
These models follow the specification of O = p(ot|st)
suggested by Bai et al. [4], [5], and require 624 parameters
total. Since it is expected that the cop will gather mostly “no
detection” observations in a typical scenario, it is clear from (11)
that the number of mixing components for αia,o(s) will grow by
a factor of at least 600 on a majority of the intermediate Bellman
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backup steps for offline policy approximation. Likewise, (13)
implies that the number of mixture components for b(st+1)
will grow by a factor of at least 600 on each update of the
Bayes’ filter whenever the target is not detected. This example
shows that, even for relatively small problems, unnormalized
GM likelihood models are inconvenient for approximating or
evaluating optimal policies in continuous state spaces.

III. VARIATIONAL CPOMDP POLICY APPROXIMATION

As discussed in [3] and mentioned in [4], semantic ob-
servation likelihoods are ideally modeled by self-normalizing
functions like the softmax model

p(ot = j|st) =
exp(wTj st + bj)

∑No

c=1 exp(w
T
c st + bc)

(20)

wherew1, . . . , wNo
∈ RN and b1, . . . , bNo

are the vector weight
parameters and scalar bias parameters for each categorical
outcome of ot given st. In addition to ensuring

∑
j p(ot =

j|st) = 1 ∀st ∈ S(S), softmax functions require relatively few
parameters compared to GM likelihoods, and scale well to higher
dimensional spaces. Fig. 1(b) shows how the cop’s semantic
observation likelihood can be easily modeled with a softmax
function featuring three semantic categorical classes (two of
which collectively represent the “no detect” observation via the
generalized “multimodal softmax” (MMS) formulation [27]).
Unlike the GM likelihood function approximation in Fig. 1(c),
the softmax model only requires nine parameters.

In general, softmax parameters are easily synthesized to
conform to a priori sensing geometry information and quickly
calibrated with training data [27], [52]. Building on previous
work, this assumes linear boundaries between softmax classes.
However, since the product of Gaussian and softmax functions
is analytically irreducible, modeling p(ot|st) via softmax func-
tions breaks the recursive nature of the α function updates for
GM-based PBVI approximations. This section addresses this is-
sue in a novel way using a VB inference approximation. The VB
approximation allows the product of each Gaussian term within
a GM and a softmax likelihood function to be approximated as a
GM. This restores the closed-form Bellman recursions for GMα
approximations while keeping the resulting number of mixands
in the result to a minimum. This VB approximation is inspired
by a very similar technique developed in [3] to approximate (13)
for the Bayesian filtering problem, when b(st+1) is a GM PDF
and p(ot+1|st+1) is a softmax model. Here, the approximate
VB inference technique is generalized to the dual problems of
Bayesian filtering and optimal action selection under uncertainty
for CPOMDPs. This technique is then extended for nonrandom
walk transition functions to permit use of LTI state-space models
in the GM-based Bellman recursions.

A. Variational PBVI for Softmax Semantic Likelihoods

To use softmax p(o′|s′) functions in the GM-based PBVI
CPOMDP policy approximation described in (11) and (12),
the local VB approximation for hybrid inference with softmax
models developed in [3] is used to approximate the product of a

Fig. 2. 1-D VB approximation example: approximate PDF-likelihood product
(red) aligns closely with true product (pink).

softmax model and a GM as a variational GM

αin−1(s
′) p(o′ = j|s′)

=

[
M∑

k=1

wikφ(s
′|μik,Σik)

][
exp(wTj s

′ + bj)
∑No

c=1 exp(w
T
c s
′ + bc)

]

≈
M∑

h=1

whφ(s
′|μh,Σh). (21)

Fig. 2 shows the key idea behind this VB approximation using a
toy one-dimensional (1-D) problem. The softmax function [blue
curve, e.g., representing p(o′|s′) in (21)] is approximated by a
lower bounding variational Gaussian function (black curve). The
variational Gaussian is optimized to ensure the product with
another Gaussian function (green, e.g., representing a single
mixand of αin−1) results in a good Gaussian approximation
(red dots) to the true non-Gaussian (but unimodal) product of
the original softmax function and Gaussian functions (solid
magenta). More formally, the VB update derived in [3] for
approximating the product of a normalized Gaussian (mixture)
PDF p(s′) and a softmax function p(o′|s′) can be adapted and
generalized to approximate the product of an unnormalized
Gaussian (mixture) αin−1(s

′) (from the intermediate Bellman
backup steps) and softmax likelihood. In the first case, consider
the posterior Bayesian PDF for a Gaussian prior p(s′) given
o′ = j

p(s′|o′) = p(s′)p(o′|s′)
p(o′)

=
1

C
φ(s′|μ,Σ) exp(wTj s

′ + bj)
∑No

c=1 exp(w
T
c s
′ + bc)

C =

∫ ∞

−∞
φ(s′|μ,Σ) exp(wTj s

′ + bj)
∑No

c=1 exp(w
T
c s
′ + bc)

ds′

By approximating the softmax likelihood function as an unnor-
malized variational Gaussian function f(o′, s′), the joint PDF
and normalization constant C can be approximated as

p(s′, o′) ≈ p̂(s′, o′) = p(s′)f(o′, s′)

C ≈ Ĉ =

∫ ∞

−∞
p̂(s′, o′)ds′.

The key trick here is that, for any j ∈ Ω, it is possible to
ensure f(o′ = j, s′) ≤ p(o′ = j|s′) by construction [3], using
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the variational parameters yc, γ, and ξc such that

f(o′ = j, s′) = exp

{

gj + hTj s
′ − 1

2
s′TKjs

′
}

(22)

gj =
1

2

⎡

⎣bj −
∑

c 	=j
bc

⎤

⎦+ γ

(
No
2
− 1

)

+

No∑

c=1

ξc
2

+ λ(ξc)[ξ
2
c − (bc − α)2]− log(1 + exp {ξc})

(23)

hj =
1

2

⎡

⎣wj −
∑

c 	=j
wc

⎤

⎦+ 2

No∑

c=1

λ(ξc)(α− bc)wc (24)

Kj = 2

No∑

c=1

λ(ξc)wcw
T
c . (25)

Since f(o′ = j, s′) ≤ p(o′ = j|s′) for any choice of the
variational parameters, it follows that Ĉ ≤ C. As such, the
variational parameters, which produce the tightest lower bound
Ĉ can be found through an iterative expectation-maximization
algorithm, which requires alternately reestimating p̂(s′|o′) given
new values of the variational parameters, and then recomputing
the variational parameters based on new expected values of s′

from p̂(s′|o′). Upon convergence of Ĉ to a global maximum,
the product p(s′, o′ = j) = p(s′)p(o′ = j|s′) becomes well-
approximated by the product p̂(s′, o′ = j) = p(s′)f(o′ = j|s′),
which is another (unnormalized) Gaussian

p̂(s′, o′ = j)

= exp

{

(gp + gj) + (hp + hj)s
′ − 1

2
s′T (Kp +Kj)s

′
}

.

(26)

Normalizing this joint distribution by Ĉ gives the posterior
Gaussian PDF approximation p̂(s′|o′) = φ(s′|μh,Σh). The
approximation of the product of a GM PDF with a softmax
model follows immediately from fact that this product is a
sum of weighted products of individual Gaussians with the
softmax model, where each individual product term can be
approximated via VB.

This approximation is now adapted to the case where the
“prior” GM PDF over s′ is an unnormalized GM function
αin−1(s

′). The results from the above derivation must simply
be multiplied by the normalizing constant Ĉ to obtain the
approximate joint p̂(s′, o′ = j) for each mixture term instead.
This allows (11) for the intermediate α function update in the
PBVI backup to be approximated as

αia,j(s) =

∫

s′
αin−1(s

′)p(o′ = j|s′)p(s′|s, a)ds′ (27)

=

∫

s′

[
M∑

k=1

wikφ(s
′|μik,Σik)

][
exp(wTj s

′ + bj)
∑No

c=1 exp(w
T
c s
′ + bc)

]

× [φ(s′|s+Δ(a),Σa)] ds′ (28)

Algorithm 1: VB-POMDP Backup.
Input: b ∈ B0, Γn−1
for each αn−1 ∈ Γn−1, a ∈ A, j ∈ Ω do
αa,j(s)←

∑
h whφ(s|μh −Δ(a),Σa +Σh)

αn(s) = ra(s) + γ
∑
j argmaxαa,j

(< αa,j , b >)
end for
return: αn(s)

≈
∫

s′

M∑

h=1

whφ(s|μ̂h, Σ̂h)φ(s′|s+Δ(a),Σa)ds′ (29)

→ αia,j(s) ≈
M∑

h=1

whφ(s|μ̂h −Δ(a), Σ̂h +Σa) (30)

where (Δ(a),Σa) are known constants for each a. In practice,
the intermediate αa,j(s) functions do not depend on the belief
being backed up, and can therefore be calculated once per itera-
tion over all beliefs. Algorithm 1 summarizes how the GM-based
PBVI updates developed in Section II are thus modified to use
the VB approximation for softmax semantic observation likeli-
hoods. The VB algorithm does introduce some approximation
error. The possibility of using the bound on the log-likelihood
to estimate this error across backups will be explored in future
work.

Following [3], recursive semantic observation updates to GM
b(st+1) PDFs can also be carried out online during execution of
these policies using softmax likelihoods with the VB approxi-
mation, as shown in Fig. 3

b(st+1) ∝ p(ot+1 = j|st+1)

∫

st

p(st+1|st, a)b(st)dst (31)

=

[
J∑

q=1

wqφ(st+1|μq +Δ(a),Σa +Σq)

]

×
[

exp(wTj st+1 + bj)
∑No

c=1 exp(w
T
c st+1 + bc)

]

≈
J∑

q=1

wqφ(st+1|μq,Σq). (32)

In this example, the resulting posterior GM PDF for the “no de-
tection” update has only four components,1 thus demonstrating
that parametrically simpler softmax models drastically reduce
the complexity of inference compared to unnormalized GM
likelihood functions.

B. Bellman Backups With Arbitrary LTI State Dynamics

As in previous work in [5], the Bellman backups used so far
assume random walk state transitions from st to st+1. On the
other hand, many problems such as target search and tracking

1The two prior components in this example are evaluated against separate
categories for “no detection left” and “no detection right,” which together make
up a nonconvex “no detection” semantic observation class via an MMS model.
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Fig. 3. GM belief update with an MMS observation likelihood model. The negative observation of “No Detection” causes the posterior to split further into a
bimodal distribution.

require modeling more sophisticated dynamic behaviors, e.g.,
via LTI state-space models. In discrete time, such dynamics are
represented by a state transition matrix (STM) F ∈ RN×N and
action effect Δ(at) ∈ RN , such that

st+1 = Fst +Δ(at).

In this case, the state transition PDF takes the form

T = φ(st+1|Fst +Δ(at),Σ
a).

Using this altered transition model to rederive (30), the new
intermediate alphas are

αia,o(s) ≈
M∑

h=1

whφ(Fs|μ̂h −Δ(at), Σ̂h +Σa).

However, CPOMDP policy approximation requires that the α
functions depend on the “current” state s, not on mappings of s.
Therefore, the Gaussian dependency on Fs must be converted
to a dependency on s

φ(Fs|μ,Σ) ∝ φ(s|μ̃, Σ̃).
Expanding the left-hand side of this last expression

φ(Fs|μ,Σ)

= |2πΣ|− 1
2 exp

(

−1

2
(Fs− μ)TΣ−1(Fs− μ)

)

the STM can be factored within the exponential2

φ(Fs|μ,Σ)

= |2πΣ|− 1
2 exp

(

−1

2
(s− F−1μ)TFTΣ−1F (s− F−1μ)

)

.

The exponential term then resembles a Gaussian

φ(s|μ̃, Σ̃), μ̃ = F−1μ, Σ̃ = F−1ΣF−T .

To address the normalization in front of the exponential, a
weighting term ω is introduced

ω = |F−1F−T |− 1
2 .

2Assuming F is invertible; this is always the case for LTI systems since F
comes from the corresponding matrix exponential.

Multiplying and dividing by ω gives

φ(Fs|μ,Σ)

=
ω

ω
|2πΣ|− 1

2 exp

(

−1

2
(s− F−1μ)TFTΣ−1F (s− F−1μ)

)

=
1

ω
|2πF−1ΣF−T |− 1

2

× exp

(

−1

2
(s− F−1μ)TFTΣ−1F (s− F−1μ)

)

.

Finally, a weighted Gaussian can be recognized as

φ(Fs|μ,Σ) = 1

ω
φ(s|μ̃, Σ̃)

→ αa,o(s) ≈
M∑

h=1

wh · 1
ω
· φ(s|μ̃h,a, Σ̃a).

These equations reduce to the original VB-POMDP backup
equations when F = I (identity). This transformation can also
be applied to the original CPOMDP approximation with unnor-
malized GM observation models [5].

IV. CLUSTERING-BASED GM CONDENSATION

The number of GM mixands for α functions and b(s) can still
become significantly large over iterations/time even with the VB
approximation. This section describes a novel GM condensation
algorithm to help reduce the computational overhead and enable
faster policy computation and online belief updates. Numeri-
cal studies comparing the effectiveness of different Gaussian
clustering metrics are also presented, showing that a Euclidean
distance measure between Gaussian means provides the best
overall balance between computational speed and accuracy in
terms of speeding up the widely used Runnalls’ condensation
algorithm [31] for large GMs. The Runnalls’ algorithm uses
upper bounds on the KLDs between uncondensed GMs and
condensed GMs to select successive pairs of mixands for mix-
ture moment-preserving mergers, and as such is better able to
retain information from uncondensed GMs compared to other
similar condensation methods [32], [50] while also requiring
little additional computational overhead.
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Algorithm 2: Clustering-Based Condensation Algorithm.
Input: Mixture, K, ψ
Clusters = K-means(Mixture,K);
Create empty NewMixture;
for C ∈ Clusters do
Ĉ = Runnalls(C, floor( size(C)Kψ

size(Mixture) ));

NewMixture.add(Ĉ);
end for
return NewMixture;
Subfunction: Runnalls
Input: C, max
while size(C) > max do

for unnormalized Gaussians Gi, Gj ∈ C do
[wi,j , μi,j ,Σi,j ] = Merge(Gi, Gj);
Compute KL divergence upper bound:
Bij =

1
2 [(wi + wj) log |Σi,j |

− wi log |Σi| − wj log |Σj |];
Gi = Merge(Gi, Gj), where (i, j) = argminBij ;
C. remove(Gj);

end for
end while
return C;
Subfunction: Merge
Input: Gi, Gj
wm = wi + wj
μm = wi

wm
μi +

wj

wm
μj

Σm = wi

wm
Σi +

wj

wm
Σj +

wiwj

wm
(μi − μj)(μi − μj)T

return wm, μm,Σm

A. Clustering-Based Condensation Algorithm

To remain computationally tractable, the GMs representing
each α function must also be condensed such that

αin =

M∑

k=1

wkφ(s|μk,Σk) ≈ α̂in =

M̃∑

k=1

ŵkφ(s|μ̂k, Σ̂k)

where M̃ < M (mixture terms in b(s) must also be compressed
following dynamics prediction and Bayesian observation up-
dates). Existing GM condensation algorithms perform myopic
pairwise merging of the M components in αin, such that the
resulting M̃ components in α̂in minimize some information
loss metric [4], [5]. Naïve pairwise merging tends to be very
expensive and slow when M ≥ 100 (which is often the case for
long horizon Bellman recursions with N ≥ 2).

To improve condensation speed, a novel “divide and conquer”
strategy is employed, which first preclassifies the mixture indices
into K local clusters (submixtures), and then condenses each
cluster to some predetermined number of components ψ via
pairwise merging, before recombining the results to a condensed
mixture with the desired size M̃ < M . For merging within
submixture clusters, the Runnalls’ algorithm [31] is used, which
uses an upper bound on the KL divergence between the premerge
and postmerge submixture to select the least dissimilar compo-
nent pairs merging. This process is outlined in Algorithm 2.

Since submixtures may have different precondensation sizes
depending on the clustering method used, this approach is
prone to overcondensation when each submixture is naively
condensed to the same final size. To avoid this, each submixture
is condensed according to the proportion of mixands it contains
with respect to the original mixture. This means a submixture
containing h mixands would be condensed to ψ = floor(hM̃M ).

This can still result in overcondensation if hM̃M is not an integer
for at least one submixture, but the difference between the
desired size and the resulting size is strictly upper-bounded by
the chosen number of submixtures.

Empirical tests indicate that this new hybrid method achieves
approximately the same accuracy for condensation performance
as classical full scale pairwise merging, although the hybrid
method is considerably cheaper and faster (e.g., 22.16 versus
5.69 s for M = 400→ M̃ = 20 with N = 2, in Python on a
2.6 GHz Intel i7 processor running Windows 10 with 16 GB of
RAM).

Fig. 4 shows a comparison of the classical full-mixture Run-
nalls’ condensation method to our hybrid cluster-then-condense
method for a GM with M = 400 components, with K = 4 and
ψ = 5. The integral square difference (ISD) metric [50] is used
to assess the accuracy of each method, where, given two GMs
GMh(s) and GMr(s)

ISD[GMh(s),GMr(s)]

=

∫

S(S)
(GMh(s)− GMr(s))

2ds = Jhh − 2Jhr + Jrr

Jhh =

Nh∑

i=1

Nh∑

j=1

wiwjφ(μi|μj ,Σi +Σj)

Jhr =

Nh∑

i=1

Nr∑

j=1

wiwjφ(μi|μj ,Σi +Σj)

Jrr =

Nr∑

i=1

Nr∑

j=1

wiwjφ(μi|μj ,Σi +Σj).

This example indicates that both methods result in condensed
GMs that have approximately the same ISD compared with the
original GM, although the hybrid cluster-then-condense method
is considerably faster.

B. Empirical Clustering Metric Comparisons

Theoretically, the cluster-then-merge approach is natural to
consider, since any GM can be generally viewed a “mixture of
local submixtures.” From this standpoint, mixture components
belonging to different local submixtures are unlikely to be
directly merged in a pairwise global condensation algorithm,
whereas those belonging to the same submixture are more
likely to be merged. The global merging operation can then
be broken up into several smaller parallel merging operations
within each submixture. In our initial approach, the submixtures
are identified using a simple fast k-means clustering heuristic on
the component means. Additional work verifies the robustness of
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Fig. 4. Condensation comparison of Runnalls’ method to preclustering hybrid method: an initial mixture of 400 mixands is condensed to 20 mixands; the hybrid
method results in a similar ISD as Runnalls’ alone, but significantly faster.

this method for general problem settings, and other techniques
for identifying submixture groups could also be used (e.g., to
also account for mixand covariances, etc.).

The k-means clustering heuristic employed in the example
above utilized the Euclidean distance between mixand means.
While this metric results in simple fast clustering, it also un-
derutilizes the information available. Alternative techniques for
clustering were therefore also evaluated; these take into account
additional information, specifically mixand covariances, with
the goal of finding a method that performs with an improved level
of accuracy without sacrificing too much of the speed achieved
by the Euclidean distance between means. Five methods in total
were considered for submixture formation: four alternative PDF
distance measures and the original Euclidean distance heuristic.
Each alternative method chosen has a closed-form derivation for
normalized Gaussian PDFs, and utilizes only the mixand mean
and covariance. Weights are considered within the second part
of the procedure when Runnalls’ method is used to combine
similar mixands.

The first alternative distance is the symmetric KLD,
which measures the difference in expectation between two
distributions. The symmetric KLD is defined for two normal
distributions Gi and Gj as

DsymKL =
KLD(Gi||Gj) + KLD(Gj ||Gi)

2
.

Next, the Jensen–Shannon divergence is considered. The
Jensen–Shannon divergence is a symmetric and smoothed
version of KLD that uses an average of the two distributions Gi
and Gj

JSD(Gi||Gj) = 1

2
KLD(Gi||M) +

1

2
KLD(Gj ||M)

where M =
1

2
(Gi +Gj).

The two-Wasserstein distance, sometimes referred to as the
earth mover’s distance (EMD), is a measure of the minimum
cost of turning one distribution into the other, factoring in both
distance between distributions and the probability mass of each.

The two-Wasserstein distance is defined as

W2(Gi, Gj)
2 = ||μi − μj ||22

+ Tr(Σi +Σj − 2(Σ
1/2
j ΣiΣ

1/2
j )1/2).

Finally the Bhattacharyya distance is considered, which mea-
sures overlap between two distributions and is also closely
related to the Hellinger divergence. This takes into account
both distance between means and similarity of covariances. The
Bhattacharyya distance is defined as

DB =
1

8
(μ1 − μ2)

TΣ−1(μ1 − μ2) +
1

2
log

(
|Σ|

√|Σ1||Σ2|

)

where Σ =
Σ1 +Σ2

2
.

To more directly compare tests of different dimensions, start-
ing sizes, and ending sizes, here we use the normalized version
of the ISD metric. The normalized ISD [53] constrains each
measurement to a range NISD ∈ [0, 1], and is derived from the
ISD definition as

NISD[GMh,GMr] =

√
ISD[GMh,GMr]

(Jhh + Jrr)
. (33)

Test mixtures in N = 1, 2, and 4 dimensions were generated
by sampling means from a uniform distribution from 0 to 10 on
RN , sampling covariances from a Wishart distribution with N
degrees of freedom and a matrix prior of identity scaled by a
factor of 2, and sampling weights from a uniform distribution
from 0 to 1. Each combination of dimensionality, clustering
method, number of starting mixands, number of clusters, and
final mixture size was repeated on ten different randomly gen-
erated mixtures. The time for clustering and condensation, and
the accuracy of clustering and condensation, characterized by the
normalized ISD between the starting and final mixtures, were
recorded. Additionally, Runnalls’ method without clustering
was used as an state-of-the-art baseline for accuracy, and time
and normalized ISD for Runnalls’ were recorded. The time and
normalized ISD results for each distance measure were then able
to be compared to one another and to the time and normalized
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TABLE I
TIME AND ACCURACY VERSUS RUNNALLS’ METHOD

Fig. 5. Time and normalized ISD of clustering-based condensation compared
to Runnalls’ method without clustering.

ISD results achieved using Runnalls’ method. The results were
obtained in Python on a 3.3 GHz Intel i7 processor running
Ubuntu 16.04, with 32 GB of RAM.

Table I presents the results for time of clustering and
condensation and the accuracy of each method as a percentage of
the Runnalls’ time and accuracy, averaged across all parameters
barring dimension. These results are also presented graphically
in Fig. 5. In general, the alternative methods compared poorly
to Euclidean distance in the accuracy versus speed tradeoff.
In higher dimensions, the alternative methods tended to
heavily favor circular or hyper-spherical clusters, leading to
suboptimal clustering in mixtures with elongated high density
regions. This combined with the additional overhead needed to
compute the alternative metrics led to the Euclidean distance
measure consistently providing the best balance of accuracy
versus speed, particularly in higher dimensions. Therefore, the
Euclidean distance is used in the remainder of this article.

V. SIMULATION EXPERIMENTS

This section examines application of VB-POMDP to three
simulated versions of the target search and localization prob-
lem (with N = 2, 4), as well as a five-robot simultaneous lo-
calization and navigation problem (N = 10). VB-POMDP’s
performance on the target search application is compared to
the performance of other state-of-the-art policy approximation
methods. The clustering-based GM condensation method is used
for all scenarios and with all policy approximations.

A. Colinear Cop/Robber Results

Table II compares the resulting average final rewards achieved
over a 100 step simulation for 100 simulation runs, using

TABLE II
REWARDS ACHIEVED ON BASIC COLINEAR TARGET SEARCH PROBLEM

(STANDARD DEVIATIONS OVER 100 SIMULATION RUNS SHOWN)

policy approximations for the 1-D cop–robot search problem
presented earlier in Section II-G. The second column shows
the average final rewards the proposed VB-POMDP method
[with the softmax likelihood model shown in Fig. 1(b)], while
the first column shows the average final rewards obtained for
the GM-POMDP policy approximation of [5] [using the GM
observation models shown in Figs. 1(c)]. Both methods used
the hybrid GM clustering technique introduced in Section III-B.
Results for a third greedy one-step implementation of the latter
approximation are also shown in the third column. While a
greedy policy approximation is generally expected to be sub-
optimal, it provides a realistic minimum implementation cost
baseline result for use on a robotic platform, and also provides
an indication of the problem’s difficulty (i.e., in this case, in a
single dimension).

All methods were compared pair-wise using the Student’s
t-test for the difference of two means, with 100 samples each.
Statistically, the VB-POMDP policy approximation average
performance could not be differentiated from the baseline GM-
POMDP policy, with p > 0.05. However, both policies achieved
a significantly higher average accumulated reward than the com-
parison greedy approach, with p < 0.05. These results indicate
that the VB-POMDP approximation performs as well as the
GM-POMDP approximation on this problem. The VB approxi-
mations described earlier therefore do not lead to any significant
compromises in optimality for this problem compared to the
state of the art.

B. Two-Dimensional (2-D) Random Walk Robber Results

Extending the colinear search problem, the cop robot now
attempts to localize and intercept the robber in a bounded
2-D space S = R×R, where sc,t = [Copx,t,Copy,t]

T and
sr,t = [Robx,t,Roby,t]

T . The robber again executes a Gaussian
random walk

sr,t+1 ∼ N (sr,t, I).

The cop’s noisy actions are A = {East,West,North,South,
Stay}; each has an expected displacement of 1 m in the corre-
sponding direction. The cop receives semantic observationsΩ =
{East, West, North, South, Near}, simulating a coarse proxim-
ity sensor that depends on the relative location between the cop
and robber; the softmax likelihood model for this is shown in
Fig. 6. Rewards are based on the cop’s distance from the robber

r(dist(Robt,Copt) ≤ 1) = 5

r(dist(Robt,Copt) > 1) = 0.

As such, policies are found for the combined difference state
st=sr,t − sc,t=[ΔXt,ΔYt]

T =[Robx,t − Copx,t,Roby,t −
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Fig. 6. Softmax semantic observation model for 2-D search problem, with
s = [ΔX,ΔY ] = [Robx −Copx,Roby −Copy ].

TABLE III
AVERAGE FINAL REWARDS FOR THE 2-D SEARCH PROBLEM (STANDARD

DEVIATIONS OVER 1000 SIMULATION RUNS)

Copy,t]
T , so that N = 2. The corresponding continuous state

reward function is modeled as a GM consisting of a single
weighted Gaussian located at the point [0−Δ(a)x, 0−Δ(a)y],
where Δ(a) is the expected displacement of the cop resulting
from a given action. This incentivizes the cop to drive st to [0,0].
Of note, no negative reward is introduced as a time penalty. With
a single source of positive reward and no negative rewards, the
actual weight of the reward GM mixands is irrelevant, as any
reward gradient is enough to encourage the cop to maximize
reward by reaching the desired state quickly.

Both GM-POMDP and VB-POMDP solvers were given 8
h to find policies, though in both cases approximations had
converged within 4 h. In addition to comparing these approxima-
tions to a simple greedy policy as a reference baseline “online”
approximation as before, an omniscient “Perfect Knowledge”
solver (i.e., which has access to perfect observations about the
robber’s location) was also assessed to provide an upper bound
on optimal policy performance. This solver leads to a policy
whereby the Cop’s actions minimize its distance from the mode
of its belief in the robber’s location, where the belief is modeled
by a Dirac delta function centered on the robber’s true state.

All policy approximation methods were again compared pair-
wise using the Student’s t-test for the difference of two means,
with 1000 samples each. Table III shows the mean reward and
standard deviation for the results, and Fig. 7 show the accu-
mulated results, in which the VB-POMDP method significantly
outperforms both the GM-POMDP and greedy approximations
withp < 0.05, while it is outperformed by the perfect knowledge
policy with p < 0.05.

To examine the policies’ sensitivities to the problem parame-
ters, the simulations were repeated with slower robber dynamics

sr,t+1 ∼ N (sr,t, 0.7 · I).

The results of these tests are shown in Fig. 8. The relationship
between perfect knowledge, VB-POMDP, and GM-POMDP

Fig. 7. Total reward histograms for 2-D search problem.

Fig. 8. Total reward histograms with slower robber.

Fig. 9. MMS semantic observation model for 2-D search problem, with
s = [ΔX,ΔY ] = [Robx −Copx,Roby −Copy ].

remains unchanged. The Greedy policy now outperforms GM-
POMDP, yet still falls short of VB-POMDP, both with p < 0.05.
These results, when combined with those of Fig. 7 indicate
that problems with higher levels of noise or uncertainty de-
rive greater benefit from more complex planning and control
algorithms.

To examine the algorithms’ responses to differing observation
models, the tests were run again with a modified version of
the 2-D search observation model, shown in Fig. 9. This model
contains two observations, the “Detect” observation, which is
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Fig. 10. Comparison of robber state estimates and rewards for a typical 2-D Target Search simulation using different policy approximations. VB-POMDP (green)
maintains a slightly overconfident belief but avoids extended periods without reward, leading to a higher average reward than either GM-POMDP method (blue)
or Greedy (red). All distances in meters, with each ΔT = 1 s time step representing a single discrete simulated dynamics and measurement update.

TABLE IV
CAPTURE STATISTICS FOR MMS 2-D SEARCH

identical to that from Fig. 6, and the “No Detect” observation,
which combines the “North, South, East, and West” observations
of Fig. 6. This leads to an MMS observation modal and highly
non-Gaussian state beliefs with a generally lower certainty of
the target’s position. The measured statistic of these tests is the
number of steps for the pursuer to catch the target for the first
time. Each simulation was allowed 100 steps to reach this goal
state before termination.

The results of these tests are shown in Table IV. A binomial
statistical test was used to compare the percentage of captures
for each method. From this metric, it is once again found that
VB-POMDP outperforms both GM-POMDP and Greedy poli-
cies in pair-wise statistical comparisons with p < 0.05, while
GM-POMDP outperforms Greedy with p < 0.05.

C. Discussion

The colinear search scenario results indicate that for a simple
problem VB-POMDP achieves near parity with GM-POMDP
method, and that both methods surpass the greedy approach.
This is expected, as both the GM and softmax observation mod-
els were constructed to approximate the same semantic model
with all else held equal. Importantly, the VB approximations

used by VB-POMDP do not seem to significantly impact the
quality of the policy approximation.

Comparing the results from Section V suggests that the VB-
POMDP approximation outperforms GM-POMDP as problem
complexity increases. A contributing factor to this disparity is
that VB-POMDP can complete more backup steps within an
allotted time than GM-POMDP for the 2-D search problem
(e.g., VB-POMDP completed six times more backups than
GM-POMDP for this problem parameterization running on a
2.6 GHz processor running Linux with 16 GB RAM). This
is largely due to the number of mixands generated by each
method. In a single backup step, the GM-POMDP method
produces alpha-functions of size |αn| =

∑|Ω| |αn−1|Mo [where
Mo is the number of unnormalized GM terms needed to define
p(o′|s′) in (3)], whereas VB-POMDP produces alpha-functions
of size |αn| =

∑|Ω| |αn−1|. The additional time needed for VB
to converge is more than offset by the condensation time savings
from having fewer mixands. An example of the results of these
time savings is shown in Fig. 10. The VB-POMDP policy allows
the Cop to act more strategically than the GM-POMDP policy
when it loses contact, while avoiding the naive pursuit strategy
of the Greedy method. This agrees with intuition: completing
additional backups should allow the solver to better approximate
the optimal policy.

Another contributing factor to the quality of the VB-POMDP
approximation is the amount of condensation required between
backups. As shown in Fig. 5, condensation of larger mixtures
leads to larger approximation errors, setting a practical limit on
how closely a theoretically optimal policy can be approximated
with a finite number of GM components. Since VB-POMDP
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generates a smaller number of mixands during the backup
step, such errors from condensation accumulate less often. This
suggests VB-POMDP and GM-POMDP ought to produce the
same results if each were given an infinite amount of time and
an unbounded number of mixands for policy approximation.
However, in practical resource limited situations for offline
computation, VB-POMDP holds a distinct advantage.

Note that the VB approximation for state belief updates in
(31) can produce slightly overconfident posteriors, as seen in
Fig. 10. As discussed in [3], this can be mitigated by using a
VB importance sampling approximate softmax update, which
carries an additional Monte Carlo importance sampling step to
compensate for optimistic covariances produced by the VB soft-
max update approximation. This would result in an additional
speed versus accuracy tradeoff.

D. Comparison to Online Algorithms

Like GM-POMDP, VB-POMDP is an offline policy approx-
imation algorithm, requiring the majority of computation to
take place prior to deployment on a real platform. Alternative
online policy approximation methods could also be used to solve
CPOMDPs, but would result in different implementation trade-
offs for speed, online computing requirements, and belief space
coverage. This section compares VB-POMDP to a state-of-the-
art online approach known as POMCP [25], which is a Monte
Carlo Tree Search [40] based algorithm for online POMDP
approximation. While this comparison of offline VB-POMDP to
online POMCP is not strictly an “apples to apples” comparison,
it does provide some useful insight to underscore the practi-
cality of VB-POMDP (and offline solvers more generally) for
problems like dynamic search and localization with semantic
observations.

POMCP uses a generative model of state dynamics and ob-
servations to propagate a search tree of histories, choosing the
path through the tree with the greatest expected reward. POMCP
is of particular interest since it has successfully been applied to
problems with large discrete state and observation spaces beyond
what many nonsampling based offline algorithms can typically
handle. Due to the fact that it only requires a “black-box”
generative model of the problem to function, POMCP has also
been shown to function well in continuous state spaces [42].
POMCP also provides an online “anytime algorithm,” where
computation can be cut short at some threshold and return the
best answer found to that point. POMCP is considered here
as a baseline state-of-the-art “general purpose” policy solver,
though it can suffer from extremely suboptimal worst case
behavior in certain kinds of problems with sparse rewards (as in
search/localization), due to its reliance on the upper confidence
tree (UCT) algorithm [48].

The simulations here make use of the Julia POMCP imple-
mentation in the POMDPs.jl toolbox [54]. Simulations of the
2-D target search problem were run for nine separate test cases
using a 3.3 GHz processor, 32 GB of RAM, and a Julia language
implementation on a system running Ubuntu 16.04. The cases
were run with an exploration parameter of c = 10, and were

Fig. 11. Average POMCP final rewards versus planning time.

allowed a planning depth of up to 100 time steps, mirroring the
100 steps allowed during the each run. The solver was allowed
as many tree queries as could be completed within a given
decision time. The cases differed only in the amount of time
was allowed for an action to be chosen, varying from 0.05 s up
to 3 s. These bounds were chosen to compare to the typical online
decision time required for VB-POMDP or GM-POMDP running
in a Python environment on the same machine, 0.05 s, up to a
maximum allowable wait time for a physical robot preforming
a real-time task, 3 s. Each case was run for 100 trials, with the
mean final rewards shown in Fig. 11 (results were similar for
more than 100 trials).

From Fig. 11, it is clear that increasing allowable decision
time beyond 1 s yields real but diminishing returns. Compared
to offline GM-POMDP, POMCP reaches statistical similarity
in about 0.5 s of decision time (p > 0.05). Compared to VB-
POMDP, POMCP reaches statistical similarity around 3 s of
decision time (p > 0.05). While it is likely that POMCP would
continue to show marginal improvements with additional deci-
sion time, it should be noted that these simulations were run
with vastly more computing power than would be available to a
typical small mobile robotic platform, and were run in isolation
without siphoning off available processing for tasks such as
control, vision, or communication. While Fig. 11 demonstrates
that an online solver such as POMCP can achieve similar re-
sults to a full-width offline solver if given sufficient resources,
the results imply that offline approximations like VB-POMDP
can offer some implementation advantages for mobile robotic
platforms.

E. LTI Dynamics Models Simulations

The 2-D search problems considered thus far used kinematic
nearly constant position (NCP) random walk transition models
for the robber, with F = I . The problem is extended so that the
robber now uses a kinematic NCV model, which is commonly
used for target search and tracking. The NCV model requires
four states to capture differences in cop/robber position and
velocities. For a given action and an augmented state vector
s = [ΔX,ΔY, VΔX , VΔY ], where VΔX and VΔY are relative
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Fig. 12. Comparison of state estimates and rewards for a typical run of the dynamic 2-D target search problem under NCP and NCV models. All runs use
VB-POMDP, which adapts in mismatched robber model cases to achieve nearly the same performance obtained by policies using the correct robber model. All
distances in meters, with each time step ΔT = 1 sec representing a single discrete simulated dynamics and measurement update.

TABLE V
AVERAGE FINAL REWARDS FOR NCP AND NCV POLICIES WITH DIFFERENT

ACTUAL TARGET MODELS

distance rates of change

st+1 = Fst +Δ(at) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 ΔT 0

0 1 0 ΔT

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
st +Δ(at)

where ΔT is the physical time step. This state dynamics model
requires the generalized Bellman backup equations for LTI
dynamics introduced in Section III-B. The softmax models used
previously for semantic position observations are easily updated
to accommodate the velocity states, namely by augmenting all
softmax class weights and biases with additional rows of 0’s for
the new state dimensions.

The target search simulations considered so far constrained
the policy approximation’s robber state dynamics model to be
identical to the robber’s actual dynamics. However, the true
dynamics model will not always be exactly known in real appli-
cations. This constraint was therefore relaxed to examine VB-
POMDP’s sensitivity to model mismatches in this higher dimen-
sional setting. Policies were approximated with VB-POMDP
assuming either an NCP or NCV model; each policy type was
then implemented in scenarios where the robber either actually

used the NCP model or NCV model. Table V shows the results
of 100 simulations for each scenario.

The VB-POMDP policy is able to adapt to which ever transi-
tion model is actually being used by the robber. While scenarios
in which the policy and actual robber model matched performed
slightly better on average, the mismatched model scenarios still
achieved similar results. As seen in the example in Fig. 12, the
consequences of model mismatch are more apparent when the
simpler NCP model is assumed for more complex NCV actual
robber dynamics. In the “NCP Policy, NCV Actual” scenario,
the approximate policy assumes zero mean robber velocity at
all times. This repeatedly leads to incorrect beliefs, causing the
policy to select suboptimal actions, which lead to a slightly lower
final reward. This issue is less pronounced in the “NCV Policy,
NCP Actual” simulations, where the belief converges to a correct
estimate of zero mean velocity, and achieves similar rewards to
the policy trained on NCP models. These results show that the
approximations used by VB-POMDP perform well in a higher
dimensional target search setting and still lead to reasonable
behaviors even with slight model mismatches.

F. Multirobot Localization/Goal-Seeking Problem

The “Cop and Robber” problems considered so far in
N = 2, 4 continuous state dimensions still use a fairly limited set
of actions and observations for a single decision-making agent.
This section describes a considerably more challenging localiza-
tion application to assess VB-POMDP’s usefulness for approx-
imating policies for CPOMDPs featuring higher dimensional
continuous dynamical state spaces and more complex action/
observation spaces. The problem consists of five independently
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Fig. 13. Set up and policy execution for 5-robot localization.

Fig. 14. Initial marginal state PDFs (color-coded by robot).

controlled robotic agents who attempt to reach designated goals
in a 2-D plane. The combined localization and movement prob-
lem thus contains ten continuous state dimensions. At each time
step, only one robot is allowed an action. Each robot can take one
of four actions to move (one at a time) in one of the four cardinal
directions, resulting in 20 total possible actions. At each time
step, a single robot is chosen to move and receive a semantic ob-
servation. One of the agents (Robot 1) can semantically observe
its location with respect to a fixed landmark. Robots 2–5 can only
observe their location with respect to the previously numbered
agent (e.g., Robot 3 observes that it is North of Robot 2; Robot 4
observes it is East of Robot 3, etc.). After moving, each robot also
receives a semantic observation indicating whether or not it has
arrived at its goal (thus providing a source of negative informa-
tion). All observations and beliefs are processed by a single cen-
tralized planner policy, which determines which robot to move at
any given time. Fig. 13 shows the problem setup. Fig. 14 depicts
an example initial 10-dimensional state belief for this problem,
which is highly non-Gaussian and modeled with a GM PDF.

In addition to featuring non-Gaussian initial state beliefs, this
problem is made more challenging by the random “dropping”
of observations (e.g., simulating the effect of a noisy communi-
cation channel between the robots and the centralized planner)
and multimodal/non-Gaussian state transition models. At any
given time step, there is a uniform probability that one of the
observations recorded by the robots will not be received by the

planner. Movement actions are subject to multimodal process
noise, modeled by the GM process

p(st+1|st, at) = 1

3

3∑

h=1

ph(st+1|st, at) (34)

where mixand h = 1 has a zero mean process term and mixands
h = 2, 3 have nonzero mean process terms to model distur-
bances perpendicular to the intended direction of travel (e.g., due
to wind, slippage, etc.). Using the softmax synthesis methods
detailed in [27] and [52], semantic observation models for each
robot were separately constructed in two dimensions for Robot
1, and four dimensions for Robots 2–5, before being uniformly
extended through the remaining 8/6 dimensions. This extension
requires padding the weight vectors for each softmax class with
0’s for each added dimension. Robot 1’s observation model is
identical to the one used earlier in the 2-D search problem, but
with absolute coordinates instead of relative ones. For Robots
2–5, the nonzero softmax weight terms are selected to embed
a four-dimensional probabilistic parallelepiped, such that for
any given location of Robot i, the observation model for Robot
i+ 1 resembles Robot 1’s absolute measurement model after a
coordinate shift to a given location. These softmax models are
also easily modified to derive the MMS models for each robot’s
goal-relative semantic observations (akin to Fig. 9).

The VB-POMDP policy approximation for this problem ef-
ficiently maneuvers each robot to its goal.3 In contrast to a
simple greedy policy, which attempts to move each robot di-
rectly to its goal, the VB-POMDP policy pursues information
gathering actions by moving robots across multiple semantic
observation class boundaries in order to firmly localize posi-
tions (see motion traces in Fig. 13). This behavior is further
illustrated in Fig. 15. The VB-POMDP policy also strategically
positions well-localized robots so that downstream observers
are better localized via relative observations. As expected, the
VB-POMDP policy begins taking greedy “go directly to goal”
actions only after all robots are well-localized. VB-POMDP’s
ability to produce such sophisticated information gathering be-
haviors in high-dimensional problems with complex uncertain-
ties underscores its value as a scalable policy approximation for
CPOMDPs with semantic observation models.

Note that while straightforward geometric reasoning can be
used to easily design softmax observation models for this prob-
lem, synthesis of similar likelihood models via unnormalized
GMs is especially cumbersome and impractical. At a minimum,
thousands of mixands would be needed to define a GM likeli-
hood that accurately models the boundaries of each semantic ob-
servation region in the 10-dimensional state space with sufficient
resolution, while also obeying the “sum to 1” constraint over all
semantic class labels. Such enormous GM likelihoods would
make offline Bellman backups for GM-POMDP extremely ex-
pensive to implement and Bayesian state PDF belief updates
impractical for online execution (even on powerful modern

3New policies must be solved for new sets of goals; the policy for results
shown here required 36 h to compute in the same computing environment used
for the lower dimensional search problems.
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Fig. 15. VB-POMDP policy approximation for the 5-Robot problem displays non-myopic behavior to enable better robot localization before moving robots
towards goals: (A), robot (red dot) has a broad uncertainty about its state, shown in the belief heatmap contour; (B) and (C): instead of attempting to move directly
to the goal (“x,” with “reached” radius shown as circle), the robot moves (red solid trail) across the probabilistic class boundaries of its goal-relative semantic
observation model (black dashes); (D): having localized itself sufficiently, the robot moves to its goal state.

computers), as extreme levels of condensation would be needed
to maintain manageable GM PDF beliefs.

VI. CONCLUSION

This article presented VB-POMDP, a VB policy approxima-
tion for solving CPOMDPs with hybrid continuous-to-discrete
semantic sensor observation likelihoods that are modeled by
softmax models. Softmax models are ideal for modeling se-
mantic observation likelihoods, and are cheaper and simpler to
construct and evaluate compared to unnormalized GM func-
tions that have been applied for the same purpose in other
CPOMDP policy approximations. To overcome the analytical
intractability of using softmax models in standard GM PBVI
policy approximations for CPOMDPs, a variational Gaussian
inference approximation was developed to maintain the closed-
form recursive nature of the GM PBVI approximation. This
approach also tends to produce far fewer mixture terms in the
intermediate PBVI recursion steps, and thus requires less overall
computation to approximate the optimal policy. VB-POMDP
was also explicitly extended to problems with LTI state dynam-
ics, allowing a broad set of problems to be addressed by the GM
PBVI framework. A novel approach to GM condensation was
also described and studied, whereby mixture terms are preclus-
tered into submixtures that are then condensed in parallel. This
approach was shown to be considerably faster than conventional
global mixture condensation techniques, while achieving similar
accuracy.

Experimental simulations for a simple mobile target search
and localization problem showed that VB-POMDP performed
as well as an alternative GM-based CPOMDP policy approx-
imation method, thus indicating that the approximations used
by VB-POMDP do not lead to any significant compromises in
optimality versus other state-of-the-art approximations. How-
ever, VB-POMDP was shown to be significantly more effective
on more complex and higher dimensional variants of the target
search and localization problem. Simulations for policies trained
on target state transition models differing from the true model
showed that VB-POMDP is suitably responsive and robust to

instances of model mismatch. Finally, VB-POMDP was shown
to scale and perform well on a complex 10-dimensional contin-
uous state multirobot localization/goal-seeking problem, featur-
ing highly non-Gaussian uncertainties as well as a large action
and semantic observation space.

The results presented here have many interesting implications
for developing and applying autonomous probabilistic planning
and control algorithms in hybrid continuous-discrete domains.
VB-POMDP retains many desirable properties of other GM-
based PBVI policy approximation approaches. Among these is
the ability to produce deterministic policy approximations for a
given set of tent-pole beliefs, as well as the ability to naturally
leverage Gaussian sum filters for Bayesian belief updates in
domains featuring complex continuous state dynamics and un-
certainties (which have also been shown to be more robust than
particle filters for several robotics applications [3], [55]). In addi-
tion to the search, localization and goal-seeking applications de-
scribed here, the CPOMDP framework developed here is being
leveraged for cooperative human–robot target search and track-
ing applications. Building on previous work in [3] and [27] and
ongoing work in [7], this will enable semantic “human sensor
data” from natural language inputs that can be combined with op-
timal robotic sensing and motion planning in hardware for tightly
integrated human–robot teaming. However, VB-POMDP could
also be applied to other problems where discrete semantic ob-
servations are naturally available as a function of continuous dy-
namic state variables, e.g., active semantic mapping/SLAM, tac-
tile reasoning for manipulation, collision avoidance, planning/
control of stochastic hybrid dynamical systems, etc.

Various relaxations of modeling assumptions made in this
article are also possible. For instance, as discussed in [7], VB-
POMDP can be extended to nonlinear state-dependent switching
mode dynamics models to accommodate more complex prob-
abilistic state transition PDFs that are modeled with softmax
functions [4]. This article also motivates study of complex
CPOMDPs with even larger spaces of actions and observations
than those considered here, including continuous action spaces.
The various algorithmic approximations presented here also
warrant further analysis when used in approximating optimal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURKS et al.: OPTIMAL CONTINUOUS STATE POMDP PLANNING WITH SEMANTIC OBSERVATIONS: A VARIATIONAL APPROACH 19

planning. In particular, it is desirable to obtain bounds on the
accuracy of the K-means hybrid GM condensation method, as
well as possible lower bounds on the value function via the
VB inference approximation to establish approximation error
bounds with respect to the exact optimal CPOMDP policy.
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