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Research Vision

* Treat humans as taskable information providers for autonomous robots

* Formally integrate semantic human observations into tightly coupled
optimal sensing and planning under uncertainty
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Cops and Robots Platform
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Related Work and Issues: Semantic Sensing and Planning

Decoupled Planning and Control
[Sweet, Ahmed, ACC 2016]

— Doesn’t account for information gathering actions

Discretized State Space
[Kurniawati, Hsu, Lee, RSS 2008]

— Difficult to scale to larger state spaces EEES

* Deep Learning = —
[Lore, et al., ICCPS 2016] e - | —

— Requires large amounts of training data | i < e
Online POMDP —

[Silver, Veness, NIPS 2010]

— Brittle in scenarios without intermediate rewards " emsontrag Ve i e i e cupe
CPOMPS using Gaussian Mixtures S A B
[Porta, et al., IJCAI 2011] 15x18

— Avoids issues above

— Difficult to specify observation models with GMs,
GM explosion e
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Contributions of this VWork

Readjusting flight plan to
intercept course.

The van is moving quickly |

toward that mountain.

* Semantic observation modeling in continuous state POMDPs

(CPOMDPs)
— Gaussian Mixture (GM) policy functions for softmax
observation models using Variational Bayes

S A * Novel method for taming exponential GM explosion
CO » » —  Fast pre-clustering + condensation within clusters
OO o —  Parallelized the merging process

Colinear Detection Zone

* Proof of Concept in Simulation —\mﬁ
—
| ol

—  Better scaling for large observation spaces
— More efficient policy updates > Faster convergence IOK

Likelihood

—— Detect
— T

Distance (m)
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Continuous POMDPs (CPOMDPs)

State = S = (—00, x0)
Unknown target state, Neg
known searcher state

Observations = ) = {Pos, Neg}
Actions = {Al, A2}

How to choose actions?

Neg

e POMDP solvers find
policies to map beliefs
to actions:

w(b) = a
ANN(MAl;EAl) ANN(/—’LAQJEAQ)

* Policies maximize
discounted expected
reward over time:

o0
S ¢
* Rewards given R E[Z’Y Tt
for being near t=0
the target
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CPOMDPs: Approximate Value lteration in Belief Space

Alpha Element Backup for Point-Based Value Iteration Gaussian Mixture (GM) Belief
J 0.20
] ' / / / /
ho(s) = [ s OB 8D S o(slusy)
s’ ; 2 0.15
i i J A
ay,(s) = rals) +7 Z arg IO%aX(< Q000 >)  can represent arbitrary >
PBVI-type solution oOn discretizéd space x policy functions & pdfs %
with « -vectors for policy 192 0.05
[Pineau, et al., JAIR 2006] . o
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Semantic Observational Models

 Unnormalized GM observation models lead to closed form policy approximations, but non-trivial to specify
* Softmax Models require significantly fewer parameters to construct realistic observation likelihoods than

unnormalized GM models
* Linear scaling with dimension

GM with 200 Mixands GM with 8 Mixands Softmax Model with 3 Classes
600 Parameters 24 Parameters 9 Parameters
Probability of Not Detection: p(o=2|s) ) s Probability of Detection: p(o=1|s)
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Semantic Observational Models [sweet, Ahmed, ACC 2016]
exp(fugss;C + b,)
S exp(w! sy, + be)

A Useful Approach: Softmax Models  p(o;s;) =

Dominant Regions

g Segment Contlnuous State Space Into 5 Softmax Probabi‘litie‘sfor Rarjgfa+Bearing Model
discrete classes Likelihoods for all classes : e
2 \\-__/
» Classes dominate spatial regions ~ = i°
% “’ \‘: Viﬁ%?iﬁ** SWisssen e
» Generalizes to non-convex regions e B ¢ 5
- .7:-: 5
. . ) = 4
° Sparse parameterlzatlon, easy to NorthyY Position, m 5 5 - East/X Postion, m Eg
learn from data and embed constraints g1
§-1
o -2
Compound “Near” | £-
Observation Likelihood| I
5 4 3 2 1 01 2 3 4 5
X/East Location (m)
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One Small Problem

Alpha Element Backup
ol (s) = / of_ (8)p(ols)p(s'|s, a)ds.
8/

\

J
| I 1 B exp(wl's’ +b,)
ot s Yp(ols’) = w2782 exp(—= (8" —u: V27 (s — . &
n-1(s)p(o]s) Zj L e LS vy
\ /
'
Irreducible!

e Rather than haul around softmax terms
through each successive backup, what if we
could approximate the products as GMs?
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Variational Bayes (VB) Based on [Ahmed, et al IEEE T-RO, 2013]

* Uses EM to approximate products of softmax and Gaussians as Gaussians
* Adapted to unnormalized alpha functions

PDF/likelihood value

VB Approximation Results, Soft Weights
1— : . : :
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expw! s’ + b,

at_1(s') plo]s’) = Zw};gb(sl|8§;,zi) ZS expw!s' +b
c=1 ¢ ¢

k
H
~ thfb(slmh, Xh)

h=1

— Closed form approximate Bellman backups!
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GM Condensation

Ay
S2

GM size grows quickly
under PBVI backups
and belief updates

. b,
S2
. X
S1

@
0

If GM observations:

[p(o|s")| = 10
Alpha Element Backup
tols) = [ @l (5 plols (s s, ) a1l =10
me g ’ m—l ip(s’|s,a)] =1
ol (s) =ra(s) +7 ) _argmax(< af, ,,b>) Q=3
’ 7a(s)| = 10
Then:

|, (s)| = 310
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An+1 4 O
S2
—
O >
S1
If Softmax observations:
[p(o]s’)] =1
la,—1(s")| = 10
p(s'|s,a)] =1
=3
|Ta(3)| = 10
Then:
jan(s)] = 40
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GM Condensation

A method is needed to condense the mixture such that:

n+1(8 Z’wk¢ g, Ep) e Any1(8 Zwk¢ |Nk72k)
Qf'rH—l( )Nafn—l—l( ) (NK M’<M)

* K-means partitions

mixands: p-Euclidean M mixands M’ mixands

distance Ayt q Qv Qv

'y &

« [Runnalls, AES 2007] S2
condenses each

cluster to N mixands ( »

e (Clusters then Clustering Runnalls O
recombined merging
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Condensation Example

Heuristically clusters mixands by
Euculidean distance of means

Error measure with the Integral

Squared Difference metric (ISD)
* [Williams, Maybeck, ICIF 2003]

Parallelizes condensation

Can tune based on need for
accuracy vs. speed

Continuing work: By what metric
should we cluster mixands!?
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2D Simulation

Higher-dimension Problem:
Cop maintains contact with a Robber in constrained 2D space

Differencing Observation Model

States: Defined over difference of dimensions 75
Dynamics: >0
Robber executes a random walk, 5 s
Cop moves in cardinal directions
S =[AX,AY] =[Cy — Ry, C, — R, S 0o
C, €(0,5),C, €(0,5),R, € (0,5), R, € (0,5) s
Observations: 50
2 = {North, South, East, West, Near}
—-7.5
Rewards:
—10.0 + T T T T T T T
=10.0 7.5 =5.0 -2.5 0.0 2.5 5.0 1.5

r(Dist(R,C) <1) =3
r(Dist(R,C) >1) =0
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Comparison of Results (2D)

* Equal computation time given to both the VB-POMDP
(9 parameters) and GM-POMDP (~600 parameters)
 VB-POMDP accomplished more backups in that time

Average Rewards, with sample standard deviation

140 A

120 ~

112

100 -

80 4

60

Average Reward

40
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Softmax
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Accumlated Reward

Average Accumulated Rewards over Time

140 4

—— GM-POMDP A
—— VB-POMDP g
120 - o e
— Greedy e
100 -
80 -
60 -
40 -
20 -

T
0 20 40 60 80 100
Time Step

 VB-POMDP outperforms both GM-
POMDP and Greedy approach in
pairwise comparisons (p<0.01)
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Conclusions
Readjusting flight plan to

* Closed form CPOMDP policy function approximations via [ Thevan is moving quickly |
. . toward that mountain. intercept course.
softmax semantic observation models ‘
— Insensitive to state space extent/dimension (no discretization)

— Depends on belief complexity (i.e. # of mixands)

< | * Heuristic clustering efficiently parallelizes and
expedites GM Condensation
o) — No significant performance loss

Colinear Detection Zone
 VB-POMDP improves on state of the art |

—  Better scaling for large observation spaces T ® L

®
— More efficient policy updates = Faster convergence ol — Eitiffe“/ UK

Distance (m)
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Future Work

* Improve GM Condensation

é‘o.s— ZA
— Clustering in PDF space £ os- T 0 Cluster
S in this
* Hierarchical Approach 5 . \\‘ space
— Exploit problem structure to £ @ R
scale to more complex problems = U
Distance (m)
. B  Verification on physical
Billiard Room h a rd Wa re
D — Vision-based target detection
Hallway and tracking

— Humans sensors providing

. | Bookcase semantic observations
]

s i ek — Natural Language Interface

Dining Room
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