Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search

Luke Burks Graduate Research Assistant Nisar Ahmed Assistant Professor

International Conference on Information Fusion July 13, 2018 Cooperative Human-Robot Intelligence Laboratory Ann and H.J. Smead Aerospace Engineering Sciences University of Colorado at Boulder

Research Vision

- Treat humans as taskable information providers for autonomous robots
- Formally <u>integrate</u> semantic human observations into <u>tightly coupled</u> <u>optimal</u> sensing and planning under uncertainty

Cops and Robots Platform

Position (Object)		Position (Area)		Movement	
I think I know	nothing a robber Roy Pris Zhora	is is not	inside near outside	the study the billiard room the hallway the dining room the kitchen the library	
			Submi	it	

	Robot Update	S	
Robot Questions	History		
s Roy behind the filing	g cabinet?	Yes	No
Is Roy right of the des	Yes	No	
Is Roy left of the filing	Yes	No	
Is Roy behind the des	Yes	No	
Is Roy behind the dini	ng table?	Yes	No

Contributions of this work

- Proposed Hierarchical Continuous State POMDPs (CPOMDPs)
 - Scale semantic planning to real-world sized problems
 - Combines movement and question planning

- Implemented on the Cops and Robots (CNR) platform
 - Physical robots with real human data
 - Requesting and evaluating human observations

Collaborative Bayesian Data Fusion for Target Localization

Initial target state prior (GM)

Related Work and Issues: Semantic Sensing and Planning

- Decoupled Planning and Control with VOI [Sweet, Ahmed, ACC 2016]
 - Doesn't account for information gathering actions
- Discretized State Space Partially Observable Markov Decision Process (POMDPs) [Kurniawati, Hsu, Lee, RSS 2008]
 - Difficult to scale to larger state spaces
- Deep Learning
 [Lore, et al., ICCPS 2016]
 - Requires large amounts of training data
- Online POMDP [Silver, Veness, NIPS 2010]
 - Brittle in scenarios with distant/sparse rewards
- CPOMDPs using Gaussian Mixtures [Porta, et al., IJCAI 2011]
 - Avoids issues above
 - Difficult to specify observation models with GMs, GM explosion

Active Semantic Sensing with Continuous State POMDPs (CPOMDPs) [Burks and Ahmed, CDC 2017]

POMDP solvers find policies π to map beliefs *b* to actions:

$$b = p(\mathbf{S}|\Omega, a)$$
$$\pi(b) \to a$$

Optimal policies maximize discounted total expected reward over time:

CPOMDPs: Approximate Value Iteration in Belief Space

Hierarchical CPOMDPs

- Multiple transition modes (walls)
- Large observation space (many objects)
- Need for high precision beliefs

Less tractable policy solution

Hierarchical CPOMDPs

- Can exploit problem structure
- Rooms each become a bounded continuous space
- Set of rooms forms a higher level discrete state space
- A Discrete POMDP that chooses among Continuous POMDPs

$$VOI(o) = (\sum_{o_i \in O} p(o = o_i)[max_a \int p(s|o = o_i)R(a, s)ds]) - max_a \int p(s)R(a, s)ds$$
/alue of Human
Expected Reward Reward Reward Without Observation (o)

- POMDPs implicitly find VOI during policy solution
- Can extract 2nd, 3rd, ..., Nth most valuable question for minimal additional computation

Robot Questions Is Zhora inside the study? YES NO ? Yes Yes Yes

Most Valuable Questions

Cops and Robots 2.0

Camera 1: Study

QUIT

Cop Video

Camera 2: Hallway

Camera 3: Kitchen

Robo	ot Questions		
Is Zhora inside the study?	YES	NO	?
Is Zhora inside the library?	YES	NO	?
Is Zhora right of the desk?	YES	NO	?
ast question was:			
ast answer was:			

Hardware Simulations

- Two maps: Familiar and Unfamiliar to human subject
- Three Starting Configurations for Familiar, two for Unfamiliar
- Four Information Scenarios:
 - No Human Information
 - Only Human Push
 - Only Robot Pull
 - Both Push and Pull

Seconds

Misleading Human Input

University of Colorado Boulder

114

Helpful Human Input

Pursuit Behavior

- Patrols Hallway, briefly surveys rooms
- Catches robber crossing hallway

- Moves from room to room
- Pursues and corners robber

Conclusion

- Hierarchical CPOMDPs enhance collaborative tracking
 - Optimally exploits human information
 - Applies to realistic scale problems

- Hardware implementation show advantage of <u>combined</u> human-robot sensing
 - Robust to occasional human errors
 - Human information significantly influences policy behavior
 - Generally consistent belief estimates

Open Directions

Careful, there are Relax assumption of known structure some trees over here. No Targets Detected – Use human to impose structure Build likelihood models from sketches Adapt planning dynamically

- Incorporating additional state information
 - Target Velocity
 - Contextual Conditions
 - Human States

Acknowledgements

COHRINT Team

- Ian Loefgren: MS Student
- Luke Barbier: BS Student
- Jeremy Muesing: MS Student
- Jamison McGinley: BS Student
- Sousheel Vunnam: BS Student
- Nisar Ahmed: Assistant Professor,
 Ph.D. Advisor

Questions?

