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Abstract— This work presents novel techniques for tightly
integrated online information fusion and planning in human-
autonomy teams operating in partially known environments.
Motivated by dynamic target search problems, we present a
new map-based sketch interface for online soft-hard data fusion.
This interface lets human collaborators efficiently update map
information and continuously build their own highly flexible
ad hoc dictionaries for making language-based semantic ob-
servations, which can be actively exploited by autonomous
agents in optimal search and information gathering problems.
We formally link these capabilities to POMDP algorithms
for optimal planning under uncertainty, and develop a new
Dynamically Observable Monte Carlo planning (DOMCP) algo-
rithm as an efficient means for updating online sampling-based
planning policies for POMDPs with non-static observation
models. DOMCP is validated on a small scale robot localization
problem, and then demonstrated with our new user interface
on a simulated dynamic target search scenario in a partially
known outdoor environment.

I. INTRODUCTION

Dynamic information gathering algorithms typically lever-
age well-defined environment and sensor models to solve
challenging combined optimal control and estimation prob-
lems. While exact solutions are intractable, approximate
algorithms for autonomous data fusion and decision mak-
ing under uncertainty can be very brittle. This problem is
exacerbated in unknown environments, where the demands
of online perception and planning lead to even greater
computing bottlenecks, uncertainties and risks.

To mitigate these issues, human teammates can act as
‘sensors’ that contribute valuable information beyond the
reach of autonomous robots. For instance, vehicle operators
in search and tracking missions can provide ‘soft data’,
semantic categorical data often allowing less precision and
broader uncertainty than precise numeric coordinates, to
narrow down possible survivor locations using semantic
natural language observations (e.g. ‘Nothing is around the
lake’; ‘Something is moving towards the fence’), or provide
estimates of physical quantities (e.g. masses/sizes or location
of obstacles, distances from landmarks) to help autonomous
vehicles better judge and understand search areas – thus im-
proving online decision making. Furthermore, human infor-
mation can be leveraged to not only describe an environment
but also define it. A human sensor might also act to indicate
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Fig. 1: Collaborative human-machine target search scenario.

areas of interest and refer back to them in the course of
providing semantic information, as in Fig. 1. But how can
autonomous reasoning actively and opportunistically engage
human sensing in unknown environments?

This paper introduces a framework that enables humans
and autonomous agents to work together to define and
describe dynamic or unknown environments while simul-
taneously planning and acting within that environment to
accomplish tasks. Our framework uses Bayesian data fusion
to exploit human sensors and autonomous robotic sensor
platforms in a ‘plug and play’ manner. This idea has gained
increased attention in various contexts over the last decade
[1], [2], [3], [4], [5], [6]. However previous work on ‘soft’
human data fusion with ‘hard’ robotic data has primarily
focused on structured and known environments, and have
largely ignored coupling to planning/control problems. In this
work we apply techniques from our recent work on Bayesian
semantic robot-human sensor data fusion in structured envi-
ronments [7], [8], [9], [10] alongside concepts from optimal
active sensing and online planning under uncertainty, in order
to develop new methods for interactive multi-level human-
robot sensing of dynamic states in unknown environments.
We present methods for dynamic sensor model creation and
adaptive online planning with changing sensor models, then
combine these for collaborative human-robot search.

A. Motivating Concept and Problem Description

This paper focuses on dynamic target search problems, in
which an autonomous robot attempts to track and intercept
a moving target in a partially unknown environment. An
outdated overhead map of the search area is available a priori
(e.g. old satellite data for a large outdoor search region, or
old floor plans for a building), and the true environment map
and its features are gradually revealed to the search robot as it
moves through the area. The robot carries a visual proximity
sensor which allows it to identify the target at close range,



and relies on a human collaborator to provide additional
soft observations about the target state. These observations
are modeled by a codebook of possible semantic statements
indicating both positivity and 2D direction with respect to
the robot or landmarks, e.g. “The target is not West of you”,
“Target is next to the building, moving North”.

The human collaborator can also define new semantic
observational anchors other than the pursuer itself by adding
and labeling fixed landmarks with a specified spatial extent to
the environment map, using a sketch interface similar to the
one in depicted Fig. 1. The new landmarks can then be used
in future observations. The robot can also request specific
semantic information by modeling the human as an on-
demand soft sensor, i.e. a sensor able to provide categorical
statements about the problem state. For example, after the
human identifies and sketches a new landmark on an outdoor
map and labels it as “Water”, the robot can ask “Is anything
near the Water?”. This level and type of flexible interaction
requires new algorithms for modeling ad hoc observations
added by the human, autonomous planning under uncertainty,
and dynamic integration of soft sensing into the search task.

II. BACKGROUND

A. Model Representation and Human Interface

Our problem requires timely acquisition and suitable
representation of ad hoc observation semantics. Free-form
sketching provides a convenient way of indicating and con-
straining spatial objects for semantic reference in a 2D
environment. In previous research for robotic target search
and localization in uncertain environments, sketching has
been used to indicate the positions of obstacles in a scene
[11], to constrain the bounds of an operating area [12], or to
give direct sensing inputs about the target locations [7]. In
our application, the human operator can sketch boundaries of
objects/areas of interest within the search environment and
provide suitable labels for these. These sketches can then
be interpreted and converted to new probabilistic sensing
model components via softmax functions by leveraging the
techniques of [9], to create structured natural language code-
books that permit the robot and human to exchange semantic
observations describing the dynamical state space for the
search problem. Each of these semantic observations is an
instance of a ‘soft data’ update, which can be used along
with the corresponding model via a Bayesian state posterior
pdf update alongside ‘hard data’ from robot sensors.

The semantic human-robot interface considered here
builds significantly on the interfaces developed and used in
[7], [13], [14]. These earlier interfaces restricted the possible
set of human observations to a pre-determined codebook
in a small perfectly mapped indoor search environment,
where the human could be located either remotely (e.g. with
access to the vehicle’s visual sensing feed) or in situ in
the search environment. As in previous work, the human
gathers information about the problem independently from
their robotic teammate. This is then fused with other infor-
mation available to the robot during either a “Human-Push”
event (i.e. the human opportunistically provides information

without prompting) or “Robot Pull” event (i.e. the robot
opportunistically prompting the human for information). Any
approach used by the robot to plan future actions and “Robot
Pull” prompts must account for Bayesian data fusion of both
soft semantic data and hard sensor measurements, as well as
process and model uncertainties for state belief evolution.

The prior work in [7], [13], [14] relied on the avail-
ability of known environment and reference object models
for offline codebook generation. This severely limits the
applicability of semantic human-robot data fusion in out-
door, dynamic, and/or partially known environments, where
flexible human-level sensing, perception, and reasoning is
generally quite valuable for decision-making to cope with
complex uncertainties. Other work addresses the dynamic
models using online solvers by assuming slowly changing
models [15] or using a representative belief sample from
a static offline policy that is then adapted during runtime
[16]. Neither assumption holds here, as the model and set
of reachable beliefs can change dramatically during runtime.
The interface developed here allows the human to sponta-
neously create ad-hoc semantic observation models online,
to tailor codebooks to problem needs and user preferences.

B. Optimal Planning under Uncertainty

Dynamic target search problems feature complex stochas-
tic model uncertainties, process disturbances, and obser-
vation errors, which make autonomous optimal planning
challenging. Such problems can be formulated as Partially
Observable Markov Decision Processes (POMDPs) to arrive
at principled optimal stochastic robot guidance and control
policies. However, POMDPs are impractical to solve exactly
in all but the simplest problems [17]. Various POMDP
approximations have been developed to exploit properties
inherent to different dynamics models [18], state space
representations [19], and observation models [10].

Formally, a POMDP is specified as a 7-tuple
(S,A, T,R,Ω, O, γ). The goal of POMDP planning is
to identify a policy π which maps Bayesian beliefs
(posterior pdfs) b = p(s) over the state space S onto a set
A of discrete actions a. The belief contains all available
information about the unknown state up to the current
timestep (via the Markov assumption). Actions lead to
state transitions according to a discrete time probabilistic
transition function T , which maps from s to s′ given
action a via p(s′|s, a). The agent carrying out the policy π
receives observations o ∈ Ω which depend on s according
to the observation likelihood O = p(o|s) and rewards r
according to the reward function R(s, a). For infinite horizon
planning, a discount factor γ ∈ [0, 1) models diminishing
future returns. An optimal policy π[b(s)] → a is one
which maximizes the expected discounted reward gained
by the agent executing the policy, as represented by the
Value Function V , where V π(b) = E [

∑∞
t=0 γ

tRt(b, π(b))].
Our motivating problem is a POMDP where V is to be
maximized by a policy which recommends both movement
actions for the robot and questions to be asked of the
human, such that the expected time to target interception is



minimized. Thus a “Robot Pull” event can be considered
as a special action to ask the human a question, such that
the target can be captured more quickly by modifying b.
The inclusion of semantic queries in A brings the human
collaborator into the closed loop planning and sensing
process, treating them as a queryable sensor. These active
sensing/querying actions rely heavily on the observation
model O to anticipate expected changes in b based on the
human’s reply to questions. The main challenge is that the
set of possible observations Ω changes unpredictably over
time as the human provides new semantic models, whereas
existing methods largely require O to be static to find π.

In contrast to Bayes-adaptive methods [20], such model
alterations are not merely a refinement or discovery of an
underlying true model, but rather the introduction of new
elements by an external information source (the human
collaborator). Thus the class of “full-width” offline point-
based POMDP planners [21] is generally unusable for this
problem, since this requires knowledge of the full POMDP
model,or at the least a model of how O and Ω change.
The information-gathering nature of the problem similarly
rules out approximation methods that rely on the combination
of fully observable policies with state uncertainty or single
use observation models [22]. An additional challenge here
is that the number of observations |Ω| not only changes,
but can grow arbitrarily large as new observational anchors
are defined online. Online POMDP approaches [23] have
had success recently for large problems with various ob-
servation [24] and state space formulations [25]. Their use
of generative ‘black box’ process models and interwoven
planning/execution steps make them good candidates for our
application, if they are combined with a method for adapting
to dynamically changing semantic observation models.

C. Formal Problem Statement

We now formalize the problem of collaborative human-
robot dynamic target search in uncertain partially known
environments. An autonomous robot (the ‘pursuer’) with
continuous dynamical states sp attempts to localize, track,
and intercept a target with continuous dynamical states st,
where [sp, st]

T = s ∈ S = RN is the joint state space.
The human collaborator interacts with the pursuer through an
interactive data fusion interface which displays sp as well as
a pdf b(st) = p(st|or1:t, oh1:t, a1:t−1) for the current Bayesian
posterior belief in st given all robot observations or1:t and
human observations oh1:t available up through time t. These
states and beliefs are displayed over an geo-referenced map,
which contains some incomplete/outdated information and
is progressively updated in proximity to the pursuer by its
sensors. The human can sketch and label new map elements
o′ ∈ Ω, which are automatically converted to probabilistic
likelihood models O′ = p(o′|s) to support active online
querying and reporting of semantic data with respect to s.

The first problem addressed here is the process by which
an ad-hoc human sketch is converted into an new observation
model O′. This new O′ can then be used by an autonomous
robot to find a POMDP policy π that allows the robot to

select actions a that determine trajectories/motion plans in
the search environment and make specific queries to human
collaborators that actively request semantic observations oh.
To support long duration search missions in unknown envi-
ronments, the second problem is to then adapt an existing
policy π online to a new optimal policy π′ that maximizes
V in light of new observation models O′ and semantic
dictionary Ω′ synthesized from human input during run time.

III. PLANNING WITH AD HOC SEMANTIC SENSING

A. Ad Hoc Semantic Sensor Modeling

To address the problem of ad hoc observation model
synthesis, we assume that human sensors use a sketch
interface to draw (via pointer or touchscreen) directly on
their geo-referenced map. This allows the human to quickly
and intuitively specify the spatial extent of an area or object
of interest in real-time. A sketch consists of a label L and
set of points {P}, from which vertices can be extracted to
define the convex boundaries that are needed to implement
the procedure from [9]. This procedure uses the normal
vectors between vertex points to synthesize a softmax like-
lihood function from a convex polytope defining the log-
odds boundaries for different semantic class labels. Softmax
functions define a likelihood function for a discrete set of
observation classes o ∈ O over the continuous state s ∈ S
using a vector of weights and a bias defined for each class,

p(o = j|s) =
exp(wTj s+ bj)∑No

c=1 exp(wTc s+ bc)
(1)

These functions have several extremely useful properties
which make them convenient to encode the model O =
p(o|s) for a finite set Ω defined over continuous S. They are
self-normalizing, such that

∑
o p(o|s) = 1 for any given O

at a particular s. They also model how a particular semantic
class label may probabilistically dominate a region of the
state space, with relatively little likelihood in other regions.
The drop-off in likelihood for a given o when moving out of
its dominant region is also a tunable parameter often referred
to as steepness. The steepness of the boundary between
classes can reflect how likely different observations are to
result from similar states. Using [9], a number of points
M define a model with M + 1 classes, with M exterior
classes surrounding an interior class, which is the M -sided
convex polygon defined by a convex hull on {P}. However, a
sketch from a drawing interface tends to have far more points
needed to define the intended polygon, and the number of
vertices must be reduced in practice, e.g. using Algorithm 1.

From the points in the initial sketch, the ordered vertices of
a convex hull vi ∈ {V } where {V } ⊆ {P} in the 2D plane is
obtained using the Quickhull algorithm. {V } is progressively
reduced until it reaches a predefined size by repeatedly
removing the point contributing the least deflection angle
to the line between its neighbors, calculated via the Law of
Cosines for the vertex pair vectors −−−→vi−1vi,

Θ(vi) = arccos

[ −−−→vi−1vi · −−−→vivi+1

‖−−−→vi−1vi‖‖−−−→vivi+1‖

]
(2)
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Fig. 2: Left: Convex hull verticies (red), reduced to 4
points with sequential hull reduction (green). Right: Softmax
function and labels resulting from reduced points.
in a procedure inspired by the Ramer-Douglas-Peucker algo-
rithm. This heuristic was chosen as a proxy for maximizing
the area maintained by the reduced hull, but in practice other
heuristics could also be used. An example sketch is shown
in Fig. 2, where the initial input consists of 661 points,
shown in black, making a roughly rectangular shape. The
Quickhull algorithm is applied to find 21 points, shown in
red, defining a convex hull on the set of points. These points
are then used as input to Algorithm 1, which further reduces
the number of points to the 4 points shown in green. From
these 4 points, a softmax model consisting of 5 classes C, a
“Near” class and 4 cardinal directions, is then synthesized.
Semantic observations can now be constructed using the label
L given by the human when they made the sketch in the
form, o = “The Target is C of L.” In the case of Fig. 2, the
human labeled the sketch L = “Lake”, so a new option
of semantic observation would be “The Target is North of
Lake”. In previous work [14], softmax models were manually
created and labeled prior to the problem execution, and could
not be altered online. With the ability to construct and label
models from sketches, the issue of dynamically modifying
observation models via human input can now be addressed.

Algorithm 1 Sequential Convex Hull Reduction

Function: REDUCE
Input: Convex Hull {V }, Target Number N
if {V } == N then

return hull
end if
for vi ∈ {V } do

Θ(vi)← angle(vi−1, vi, vi+1)
end for
{V } ← {V } \ argminvΘ(v)
return REDUCE(hull,N)

Our implementations limit consideration to 4-point/5-class
models, where the semantic labels for each class are easily
mapped to simple cardinal directions by noting the North-
eastern point in the reduced hull. However, it is generally
possible construct multi-modal softmax (MMS) models in
which a single observation maps to a sum of multiple classes

p(o = j|s) =

∑
r∈σ(j) exp(wTr s+ br)∑No

c=1 exp(wTc s+ bc)
(3)

This allows sketches to consist of a larger number of reduced
points, better capturing the area indicated by the sketch.
Assigning labels to ad-hoc MMS models obtained through
sketch remains an interesting problem for future research.

A limitation of sequential hull reduction is the need to pre-
define a set number of points at which to stop the progressive
reduction. Ideally, the “natural” number of points needed
to maximize some criteria could be chosen on a sketch
by sketch basis in a geometric analogue to the Bayesian
Information Criterion (BIC) score for model selection. Note
that this approach for convex hull reduction differs from
that used in Geometric SVM classifiers in that reduces the
vertices comprising the boundaries of the hull itself, rather
than reducing the hull area in a feature hyperplane.

B. Online Policy Approximation: POMCP

One state-of-the-art online POMDP solver which has seen
success in continuous state spaces and complex sensing prob-
lems is Partially Observable Monte Carlo Planning (POMCP)
(Algorithm 2). The core of the POMCP algorithm consists
of building and exploring a tree of potential future histories
for a problem in real-time. Samples s ∼ b(s) are simulated
forward in time using a problem-specific generative model.
The model is typically represented as (s′, o, r) ∼ G(s, a);
for domains with explicit models this can be factored into a
set of separate functions,

s′ ∼ p(s′|s, a), o ∼ p(o|s′, a), r ∼ R(s, a) (4)

With either representation, a tree is built in which each
node is a sequence of actions and observations following
the initial belief. These sequences noted as a history h,
where hao is the result of an additional action a and
observation o. Each node also carries an account of states
visiting it N(h) and a value estimate V (ha) for each action
collected from the discounted rewards of its child nodes.
During the exploration phase, actions are chosen via a ←
argmaxa′

[
V (ha′) + c

√
log(N(h))
N(ha′)

]
, where c is an tunable

exploration constant. Once exploration finishes, a is selected
according to the child node of the current belief with the
highest value. POMCP is an “anytime” algorithm, i.e. the
best a found in a finite time will be returned.

In previous applications, this approach was constrained
to operate with static observation models. However, for
a problem with dynamic observation models, the beliefs
and observation likelihoods represented at future observation
nodes in the tree will become inconsistent with an al-
tered observation model. This negatively impacts information
gathering problems, as newer observations that can have a
critical impact on decision making will not be explored as
thoroughly as they would be had they been known prior to
the tree’s construction.

To address this, we note that the POMCP algorithm
advantageously allows a tree of histories to be built quickly
enough for a typical 2D target search problem, such that a
decision at the first time step can be made before traversing
and expanding that tree in future execution and planning



steps. Here we propose an alteration to the POMCP algo-
rithm, in which a planning/execution step which modifies the
observation model not only prunes branches of the tree of
histories inconsistent with the latest action and observation,
but also all future branches stemming from the current his-
tory node h which are inconsistent with the new observation
model. This results in pruning all future nodes, effectively
restarting the tree building process from scratch and ensuring
that any nodes added going forward are explored according
to the proper model. This approach prevents the tree of
histories from containing nodes inconsistent with the current
observation model, but pays both an information and effort
cost. Future nodes represent imperfect information about the
problem, and pruning them both discards this information
and requires duplicating the effort put into exploring them.
This effort includes simulating transition and reward func-
tions in addition to the observation model which was altered.
However, the speed of the POMCP algorithm still allows it
to plan effectively following a sudden model change.

C. Online Policy Revision: DOMCP

Algorithm 3 details an innovation which leverages an
alternative representation of particles in POMCP to adapt
when a new observation model p(o′|s) is introduced between
planning steps. This algorithm, Dynamically Observable
Monte-Carlo Planning (DOMCP), stores a complete descrip-
tor consisting of a current state, action, reward, resulting
state, and observation for every particle in node h. This
differs from prior work which represented each particle only
Algorithm 2 POMCP

Function: SEARCH
Input: History h, Belief B
repeat
s ∼ B(s)
SIMULATE(s, h, 0)

until TIMEOUT( )
return argmaxaV (ha)

Function: SIMULATE
Input: State s, History h, Depth d
if d > dmax then

return 0
end if
if h /∈ T then

for a ∈ A do
T (ha)← (Ninit(ha), Vinit(ha), ∅)

end for
return γ ESTIMATE VALUE(s,h,d)

end if
a← argmaxa′

[
V (ha′) + c

√
log(N(h))
N(ha′)

]
s′ ∼ p(s′|s, a), o ∼ p(o|s′, a), r ∼ R(s, a)
R← r + γSIMULATE(s′, hao, d+ 1)
h← h ∪ s
N(h)← N(h) + 1

V (ha)← V (ha) + R−V (ha)
N(ha)

return R

as the state and accumulated the reward as a sum total
alongside a collection of states. Tracking this information
requires only a minor change to the POMCP algorithm:

h← h ∪ s =⇒ h← h ∪ [s, a, r, s′, o]

A small additional memory usage cost is required, upper
bounded by a constant multiple of the cost of storing the
states themselves. This allows state trajectories and their
associated value to be redirected between nodes as obser-
vations are resampled from p(o′|s). Each time a state is
reassigned to a new node, its value contribution to that
node and its children is reassigned with it, subtracted from
its previous node. In this way, a state history which had
previously been threaded through the entire tree can be
redirected to a newly created observation node only when
receiving the new observation, preserving the information
contained in nodes retained from the original tree. This
results in a tree with observation likelihoods matching those
of the current problem model, as in Fig. 3. It is interesting
to note that although this work addresses the addition of
new observations to the observation model, in principle
DOMCP addresses any substantive change to the observation
model in use. For instance, if observations are subtracted, the
observation sampling step simply doesn’t allocate any states
to subtracted nodes.

IV. SIMULATED APPLICATIONS

A. DOMCP Demonstration

In order to demonstrate the viability of the DOMCP
algorithm, we first present a one dimensional toy problem,
building on a heavily modified version of [26]. In this prob-
lem, a single robotic agent attempts to localize it’s position in
a continuous open space, and reach a designated goal state.
The robot can move left and right across the continuous state
Algorithm 3 DOMCP Redistribution Step

Function: REDISTRIBUTE
Input: History h, Likelihood Model p(o|s)
for [s, a, r, s′, o] ∈ h do
o′ ∼ p(o′|s′)
if o 6= o′ then
h← h \ [s, a, r, s′, o]
h← h ∪ [s, a, r, s′, o′]
PURGE(hao, s′)

end if
end for
for hao ∈ h.children do
REDISTRIBUTE(hao, p(o|s))

end for

Function: PURGE
Input: History h, State s
if [s, a, r, s′, o] ∈ h,∀a, r, s′, o then
h← h \ [s, a, r, s′, o]
PURGE(hao, s′)

end if



Fig. 3: POMCP tree before vs. after DOMCP redistribution.

space with actions subject to Gaussian dynamics φ with a
mean shifted by the expected outcome:

p(s′|a = left, s) = φ(s′|µ = s− 0.5,Σ = 1) (5)
p(s′|a = right, s) = φ(s′|µ = s+ 0.5,Σ = 1) (6)

Initially, as shown in Fig. 4(a), the robot has access to two
possible observations, representing ”West” and ”East” halves
of the state space. These observations are defined by a two
class softmax function p(o = west|s) and p(o = east|s).
Two parameters, a weight and a bias, are required for each
class. After several steps, the observation model is changed
as shown in Fig. 4(b), to include an additional observation
”Far West” with p(o = far west|s). This introduces a new
class to the softmax model, modifying the denominators of
the existing classes accordingly. At this point, having reached
the simulated observation distribution shown in Fig. 4(a),
which consists of 5578 individual particles [s, a, r, s′, o], both
the replanting and redistribution approaches are separately
applied, with the resulting planning trees shown in Figs.
4(b) and 4(c). As shown, each of the new trees distributes its
observations according to the new observation model p(o′|s),
but the DOMCP algorithm retains 4096 of the original
particles without having to resimulate their states, while
POMCP must execute an additional planning step involving
both transition and observation simulations.

B. Interface Application

We applied the DOMCP algorithm to the dynamic target
search scenario described in Section IIa. Both the pursuer
’p’ and the target ’t’ operate in 2D space Srobot = R × R,
with a combined states sp,t ∈ [Sp, St]

T . The target states
are unknown as it executes a Gaussian random walk with a
standard deviation of 8 meters,

s′r ∼ N (sr, 8
2 · I) (7)

while the pursuer’s state is known. The pursuer can shift it’s
state by 10 meters with actions in the 4 cardinal directions,
North, South, East, and West, in addition to actions querying
the human in “Robot Pull” events. The pursuer is rewarded,

R(s,∀a ∈ A) =

{
100 if: dist(sp, sr) < 25

−1 if: dist(sp, sr) > 25
(8)

and any state in which the distance between the target and
the pursuer is less than 25 meters is treated as a terminal
state. The pursuer also carries an onboard visual sensor

which allows it to detect if the target is within 50 meters
in any direction but gives no indication of bearing. The
human collaborator is allowed to push information to the
robot through the use of drop-down menus encoding the
possible semantic observations, as well as introduce semantic
observations through sketching models on the map as in Fig.
5. Each of these models is constructed as a softmax function
with the methods introduced in Section IIIa. In this work,
sketches were reduced to 4 points before softmax model
synthesis. Thus the observation space consists of a “North
of”, “South of”, “East of”, “West of”, and “Near” in relation
to each sketch as well as in relation to the pursuer.

The pursuer and human start out with an outdated map
of an environment. The updated map contains significant
additional features which can be given semantic labels, and
also lack several features present in the outdated map. As
the pursuer transverses the environment, the updated map is
revealed to the human, along with the target if it is present
in the newly explored area. The pursuer acts to sweep out
belief in an efficient manner while exploiting information
from the human. As more of the updated map is revealed,
the human is able to label additional landmarks and give a
broader variety of semantic observations as in Fig. 5.

The DOMCP algorithm was tested alongside POMCP and
a maximum aposteriori (MAP) control algorithm. The MAP
approach used a greedy heuristic which directed the robot
towards the mode of the pursuer’s belief of the target’s
location. This is presented as a baseline implementation
of a reasonable low cost planner which is still capable
of achieving the goal of capturing the target, albeit less
optimally than POMCP and DOMCP. The POMCP algorithm
is implemented using the reboot method discussed in Section
III.B, in which future planning steps are pruned from the
decision tree after each sketch is made.

Five independent test scenarios were constructed from
human input and tested on each of the approaches. For
each scenario, the pursuer’s starting location, initial belief,
all target positions, sketches, and human inputs relating to
sketches were held constant across algorithms, while inputs
related to the position of the pursuer, such as “The Target
is East of You”, were given in roughly equivalent measure
between the three in accordance with the position of the
pursuer for that simulation. This ensures fair comparison
between the algorithms, testing their ability to maximize
the use of human information to quickly reach their goal.
As shown in Table I, all three approaches are capable of
capturing the target in a reasonable amount of time. As
expected, the MAP heuristic showed the worst performance
in all cases while POMCP and DOMCP preformed similarly
on the whole. While DOMCP achieve a slightly faster time to
catch on average, the low number of simulations prevents any
significant statistical difference from being identified. Indeed,
it would be unexpected to see any major discrepancy between
POMCP and DOMCP in this application with respect to
decision making as there are relatively few model alterations
over the course of each run. However, in problems where
more frequent sketches occur, or computational savings are
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Fig. 4: 1D likelihood (a) before update, (b) after POMCP search, (c) after DOMCP redistribution without extra search

Fig. 5: Example search run using DOMCP with sketching interface: (left to right) robot starts with broad uncertainty in
target position and an outdated map, and few options for human input; robot receives sketch “Parking” sketch, then inquires
if the target is north of it; human alerts robot that target east of “Building” sketch, finally leading to the updated belief.

Target Search Interface Simulation Results

Method Mean Time to Capture Std Dev
MAP 126.2 s ±37
POMCP 94.6 s ±24
DOMCP 88.2 s ±19

TABLE I: Average Time to Capture with Standard deviations

more essential, we expect DOMCP to provide an advantage.

When executing searches, human information played a
significant role in the ability of the pursuer to accurately
localize the target. While the actions suggested by a partic-
ular algorithm dictate the regions searched and therefore the
speed with which the target is caught, the human can shift
belief much more rapidly. Humans, however, are not perfect,
and mistaken observations or wrongly answered questions
can lead to inconsistent beliefs and extended searches.

Fortunately, humans also have the ability to reason about
previous measurements with new information, allowing them
to recognize mistakes and work to correct them. An example
of this behavior is showcased in Fig. 6, where the human
mistakenly indicates the exact opposite direction to the pur-
suer. After several steps the human is able to use their drone
scouting options to re-localize the target, and gives multiple
rapid observations to inform the pursuer. The target’s capture
was delayed, but could have been more so if the human had
not actively corrected a previous error. While not addressed
here, existing work [27] could provide robustness to updates
involving repeated or erroneous observations.

V. CONCLUSION

We developed and tested a novel online planning solution
for collaborative human-robot search tasks in dynamic and
unknown environments. The approach uses an extension
of the POMCP algorithm called Dynamically Observable
Monte-Carlo Planning (DOMCP) to adapt prior planning
for the purpose of optimally exploiting semantic natural
language observations by a human sensor. The innovations
included a method for construction of ad-hoc semantic
observation models from human sketches and the integration
of modified observation models into tree-based planners. The
approach was validated on a small scale problem, where
a large proportion of relevant information in the planning
tree could be retained after altering the model. It was
further demonstrated on a simulated collaborative human-
robot dynamic target search problem. The DOMCP algo-
rithm provided sensible action choices and retained planning
information as the human modified the problem with ad-hoc
semantic sensor models through a sketching interface.

In ongoing work, this approach will be extended by
allowing human model alterations to both the transitions
and rewards as well. Whereas observations can be modified
without corresponding environmental components, transi-
tions and rewards must be grounded in real elements of the
system. In these cases, human sketches could be leveraged to
update the robot’s internal model. We also plan to integrate
DOMCP with more realistic robotic sensor models and
pursue a hardware implementation of a robotic search task.



Fig. 6: Shaded estimates of the robber’s location, with green and red vertical lines representing positive and negative human
inputs respectively. (Left) The human gives an erroneous observation, shifting the belief away from the target’s state. (Right)
The human realizes their mistake and attempts to counteract their previous error.
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