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I. Introduction
As US defense networks continue to expand automated ingestion and processing of high volume remote sensing

data, human data analysts and system operators will always need to be kept in the loop, since sophisticated machine
learning algorithms for automated event detection, tracking, and data fusion do not perform perfectly in all situations
and decisions are ultimately made by people. A principal challenge is the end users of these automated systems (while
generally highly trained and knowledgeable about many aspects of the problem domain and sensing assets) are not
themselves algorithm experts or engineers and are unaware of algorithmic limitations. Current systems do not allow
users to directly interact with these algorithms to mitigate issues, e.g., by updating prior target location or behavior
information online for time-sensitive operations. New technologies that better balance automation (machine learning)
and human oversight are needed to exploit the best of both worlds at various levels of the fusion pipeline. In contrast to
current state of the art for deployable human-machine systems (where human interaction is very often treated in a post
hoc manner), the next generation of automation must opportunistically leverage human reasoning abilities while still
ensuring decision-making transparency and performance guarantees.

Our long-term research goal is to develop new fusion algorithms and interfaces that promote online collaborative
human-machine perception for robust data analysis and fusion. The key idea is to allow analysts to communicate
directly with automated machine learning algorithms via user friendly graphical interfaces for real-time information
exchange and data visualization. Specifically, such algorithms and interfaces should (i) let analysts voluntarily push new
information directly to automation, without exposing its inner workings and while accounting for uncertainties in human
reporting; and (ii) let automation actively request useful information from analysts to boost performance via online
querying. This allows the operator to act as an additional ‘human sensor’ capable of providing useful/timely information
in situations that automated reasoning otherwise is unable to resolve satisfactorily on its own. These capabilities will
require a combination of probabilistic machine learning, data fusion, and human input processing algorithms into
a unified framework that enables bidirectional information exchange between automation and analysts for improved
dynamic target analysis and decision-making under uncertainty. By using human reasoning to fill in automated machine
perception/reasoning gaps, these efforts aim to measurably improve performance and robustness of state-of-the-art
automated detection, tracking, and data fusion algorithms.

This paper looks at problem (i) (the information push) in the context of a generic large-scale dynamic multi-target
characterization problem, where a single human operator monitors events and objects of interest over a large-scale
surveillance area simultaneously scanned by multiple sensing assets in real time. In this general set up, the human
operator interacts with an automated data fusion pipeline to supervise the event/object detection, tracking and labeling
process (e.g., by confirming/rejecting particular tracks as objects of interest/false alarms or new target types at the ‘front
end’ of the automated pipeline, adjusting sensing parameters in the ‘back end’, etc.), as well as to make follow-up decision
recommendations for particular objects/events of interest in a timely manner. We focus on the problem of how target
type information provided by the human operator in real-time can be fused with uncertain target type characterization
information produced by the automated fusion pipeline. In particular, we consider how human operators can provide
additional information in the form of positive or negative observations to enhance the target type probabilities produced
by machine learning algorithms for each tracked object of interest in cases where the number of known possible target
types is finite. We specifically address the problem of modeling the error characteristics of operator observations, while
simultaneously fusing these with automated probabilistic assessments of target type for online target characterization.

∗This work was funded by the US Air Force Space and Missile Systems Center, under contract BAA FA8810-17-C-0006.
†Graduate Research Assistant, Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado Boulder
‡Graduate Research Assistant, Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado Boulder
§Graduate Research Assistant, Computer Science, University of Colorado Boulder
¶Assistant Professor, Department of Information Science, University of Colorado Boulder
‖Assistant Professor, Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado Boulder, AIAA Member

1



To achieve this goal, we address two major technical challenges:
1) ‘Stand-alone’ human operator observation error characteristics are generally difficult and cumbersome to

parameterize and calibrate a priori. For instance, when the space of possible target types is large, then any
corresponding parameterization of human observation errors must grow to accommodate all the possible ways
the human could mischaracterize multiple similar target types. Furthermore, unlike ‘hard’ data from conventional
sensors (radar, EO/IR, visual, etc.), ‘soft’ data provided by humans can have highly unusual properties that,
despite being information rich, make them difficult to process and combine with other information sources.
For instance, error probabilities associated with human observations may not have stationary or even unique
statistical properties (even once processed into a standardized format). As such, successive observations that are
streamed from a single human are also not expected to be independent and identically distributed (i.i.d.) relative
to one another, making error model parameter estimation even more challenging.

2) In real world scenarios, it is common for human reports to be dependent on other information that may already be
present/fused elsewhere in a fusion pipeline. Without proper statistical modeling and blending of all information
sources, this dependence leads to undesirable double-counting of information. For example, a human operator’s
target type observations may not be statistically independent of the target type assessments produced by the
automated fusion pipeline.

We address these issues by developing a new fully Bayesian probabilistic model for Markovian online human-
machine target characterization and data fusion which accounts for statistical dependencies between successive human
observations as well as between probabilistic machine and conditionally dependent human target assessments. Our
approach uses Dirichlet prior probability distributions over human model parameters to cope with parameter uncertainty
and training/calibration data sparsity in practical settings, and uses approximate Gibbs sampling-based Bayesian
inference to perform posthoc fusion of probabilistic machine assessments and human target type assessments. The use
of a Dirichlet distribution allows for computationally fast and efficient online Gibbs sampling. This further enables easy
scaling to scenarios requiring simultaneous error modeling and data fusion with multiple operators.

In the full version of this paper, we will provide an in-depth derivation and justification for our new probabilistic model
and approximate Bayesian inference procedure for data fusion. We will also provide an extensive set of proof-of-concept
results using synthetic target surveillance scenario data to demonstrate the main features of our approach, along with
performance comparisons of our approach versus other fusion approaches, such as the current baseline fusion approach
which does not use human input for tracking, as well as non-Bayesian maximum likelihood fusion. The remainder of
this extended abstract highlights relevant concepts and previous work in the area of human-machine data fusion, and
provides some additional details on the technical problem set-up, our novel Bayesian fusion model, and our approximate
inference approach for online data fusion.

II. Background and Related Work
Probabilistic models and Bayesian reasoning provide a powerful general framework for augmenting automated

reasoning and perception systems with ‘soft data’—observations originating from human sources [1]—to complement
‘hard data’ from conventional sensors such as lidar, cameras, sonars, etc. in partially observable environments. For
instance, human pilots/payload specialists in wilderness search and rescue missions can interpret video feeds and
electro-optical/IR data streams provided by small unmanned aircraft, and can spot important clues that help narrow
down probable lost victim locations and movements [2]. Likewise, in large-scale surveillance for defense applications,
dismounted soldiers can provide evidence on the whereabouts and behaviors of potential intruders moving across
unsecure areas. It is desirable to directly fuse such soft data with hard data from UAV patrols to improve intruder
detection and tracking performance [3, 4]. Soft data integration also lets human supervisors of automated systems stay
‘in the loop’ without overloading them with cognitively demanding dynamic planning tasks [5].

A key problem is how should soft sensor data be formally integrated with hard data to augment automated algorithms?
Soft data can be broadly related to either abstract phenomena that cannot be measured by robotic sensors (e.g. labels for
object categories and behaviors) as well as measurable dynamical physical states that must be monitored constantly
(object position, velocity, attitude, temperature, size, mass, etc.) [1]. This work focuses on the former, with the key
assumption that humans are not oracles (where oracles have perfect knowledge). As with any other sensor data, human
observations are subject to errors, limitations and ambiguities that must be modeled properly. We aim to adapt widely
used statistical sensor fusion, state estimation and machine learning algorithms—Bayes filters, Hidden Markov models,
and the like—so that soft data can be exploited with minimal effort on the part of the automated system and the human
operator.
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Fig. 1 Notional operator interface for simulated scenario with synthetic data.

Preliminary approaches to Bayesian modeling and fusion techniques allowed human sensors to directly interact
[4, 6–10] with autonomous Bayesian state estimation and perception algorithms for dynamic target and event search,
detection, localization, and tracking problems. The resulting fusion algorithms are grounded in probabilistic reasoning
and models, and thus enable ‘plug and play’ functionality—i.e., human sensors can directly plug into filters and
algorithms already used by automated systems for state estimation, and automated systems can continue to function as
usual even in the absence of human input. Kaupp et al. [6] and Wang et al. [10] extend the core concept one step further
to consider how uncertainties in human sensor model parameters can be accounted for in data fusion using maximum
likelihood estimation, whereas Ahmed et al. [4] considers a fully Bayesian reasoning approach. Dani et al. [11], Mehta
et al. [12], and Bishop et al. [13] have also considered alternative human-machine communication interfaces and
probabilistic models for soft data fusion in dynamic target tracking problems. However, a key assumption for data
modeling and fusion in all these works is that observations from a single observation remain i.i.d. and are further
independent of other available information sources. Our approach does not assume i.i.d. to limit the double-counting of
information and allows for the statistical dependencies between successive human observations.

III. Problem Setup and Proposed Solution Sketch
We consider how human operators can provide additional information in the form of positive/negative target type

observations to enhance the target type probabilities produced by machine learning algorithms for each tracked object of
interest in scenarios with a finite number of possible target types. In order to have a complete contextual picture for
all tracks, the operator can access data associated with each track by visualizing various input/output data layers of
the fusion pipeline, from raw sensor data feeds all the way up to automated track generation and labeling. However,
for the purposes of the present work, each processing step of the fusion pipeline is effectively treated as a ‘black box’
whose inner workings cannot be accessed or altered by the operator. In this paper, we consider a case with only a finite
number of tracks. Each target track is associated with a track ID, a mean state vector and covariance produced by a
tracking Kalman filter. The associated label probabilities are displayed to the operator, and the raw/processed data for
those tracks are accessible to the operator. Fig. 1 shows a notional example interface that we have built for a simulated
tracking scenario with synthetic dynamic target data. The bottom right panel of the interface shows the input panel
where operators can provide positive or negative observations to support/reject possible target classifications. Above this
input panel is a bar graph representation for the automated pipeline’s current probabilistic type assessment of a particular
selected target track. In this synthetic example, there are 5 possible distinct target types for each possible track.

The data associated to each target has many different features that an operator can examine through the interface
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to make their assessment of target type, (e.g. location, velocity profiles, intensity data) although our approach could
easily scale to more sensor data and features. We generated synthetic tracking data to approximate track detection and
dynamic target profiles seen in a real world application scenario. For this paper, we generated five very similar profiles
in order to model a scenario where the autonomy would require human assistance. Five signal return intensity profiles
are shown in Figure 2. In addition to the basic intensity profile shapes, Gaussian noise is added as well as attenuation
due to external/uncontrollable environmental effects on the sensors, e.g. due to weather.

Consider the problem of determining the true target type label X for a single selected target over a fixed frame
of data gathered by sensors and provided by the human up until some time. Prior to a set of new observations being
provided by the human, the automated fusion pipeline produces a prior probability P(X ) over the target type, e.g. using
a Hidden Markov model [14] to associate raw and/or processed data signals obtained from the sensors to the most likely
target profile according to some training database (other probabilistic algorithms could be used as well, provided they
provide some measure of uncertainty on the final target type labels). Suppose also, the human then provides a series
of N assessment observations O1,O2, ...,ON−1,ON for a given data frame, where Oi ∈

{
0+, 1+, ..., 5+, 0−, 1−, ..., 5−

}
,

where 0+ means ‘selected target is of type 0’, 0− means ‘selected target is not of type 0’, 1+ means ‘selected target is of
type 1’, 1− means ‘selected target is not of type 1’, etc. Then nominally we seek a Bayesian posterior distribution over
the target type,

P(X |O1:N ) =
P(X,O1:N )

P(O1:N )
=

P(O1:N |X )P(X )
P(O1:N )

(1)

where the term P(O1:N |X ) represents the joint data likelihood for the observed human data in the current data frame.
The key challenge for fusion is to find a suitable representation for this data likelihood that accounts for dependencies
between the observations (human target type assessments) in the sequence O1:N = O1, ...,ON as well as between O1:N
and the automated pipeline’s assessment X . The data likelihood thus represents the statistical error model for the human
operator. In addition, we must contend with the fact that limited training data will be available to identify P(O1:N |X )
with high confidence – and therefore the statistical error model for the human operator will itself also be uncertain.

Fig. 2 Signal intensity profiles from simulated noisy sensor data for five different target types.

A. Graphical Model
To model the dependencies within O1:N and between the observations and X , we propose to use a Markov model to

capture conditional dependencies between successive observations Ok and immediately preceding observations Ok−1 as
well as X . In this way, the joint observation likelihood term for a given data frame can be expressed as

P(O1:N |X ) = P(O1 |X )
N−1∏
j=1

P(O j+1 |O j, X ) = θ1
N−1∏
j=1

θ j+1, (2)

where we have defined θi as the model parameter which represents the ith conditional probability factor of the observation
data likelihood under the Markov dependence model. To capture the uncertainty in the θi parameters in light of limited
data, we can additionally impose a prior probability distribution on each θi . Consider, for instance, N = 2 observations
where we have θ1 = P(O1 |X ) and θ2 = P(O2 |O1, X ). Since the outcome space of the random variables X and O1 and
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O2 are all discrete/categorical in nature, it follows that θ1 and θ2 represent conditional probability tables (CPTs) for
multinomial distributions. Therefore, θ1 and θ2 can be modeled by arrays whose columns must sum to 1 for a particular
configuration of conditioning variables. For instance, θ1 must be a 10× 5 array, where each column j represents the CPT
for P(O1 |X = j), and entry (m, j) of θ1 represents the conditional probability P(O1 = m |X = j), for m ∈ {1, ..., 10}
(indexed 1-to-1 to the outcome space for O1) and j ∈ {0, ..., 5} (possible true target types). Likewise, θ2 must be a
10 × 10 × 5 array to represent the full CPT for P(O2 |O1, X ). For N > 2, we impose a time invariant parameter tying
assumption which forces P(Ok |Ok−1, X ) to be identical for any k ≥ 2, so that θ2 = θ3 = ...θN , thus greatly reducing
the number of parameters required to model the human operator within a given frame.

If we assume suitable model parameter prior pdfs p(θ1) and p(θ2), and marginalize over θ1 and θ2 to account for
our ignorance of the true values of these parameters, then the posterior Bayesian data fusion update for the target type
probability becomes

P(X |O1:N ) =

∫
P(X,O1:N , θ1, θ2)dθ1dθ2

P(O1:N )
(3)

=

∫
P(O1:N |X, θ1, θ2)P(X )p(θ1)p(θ2)dθ1dθ2

P(O1:N )
=

∫
θ1

∏N−1
j=1 θ2P(X )p(θ1)p(θ2)dθ1dθ2

P(O1:N )
, (4)

where we have used the Markov observation model in the last expression and slightly abused notation to indicate that θ1
and θ2 represent the specific entries of the CPTs corresponding to the observations in O1:N . In general, P(X |O1:N )
is analytically intractable to compute, to due to the complex conditional dependencies rendered by the observation
sequence and the unknown prior model parameters on the target type X . This is also evident from the probabilistic
graphical model of the data fusion problem as shown in Figure 3. Note that a variation of the data fusion problem is to
simultaneously estimate both X and the unknown human model parameters, via the joint Bayesian posterior

P(X, θ1, θ2 |O1:N ) =
θ1

∏N−1
j=1 θ2P(X )p(θ1)p(θ2)

P(O1:N )
, (5)

which is also analytically intractable to compute. This latter posterior allows for display/assessment of operator reliability
and performance through interpretation of the statistics of the parameters θ1 and θ2, which carry information about the
operator’s true positive, false positive, true negative and false negative rates for each possible target type.

Fig. 3 Graphical model of the human-machine target type data fusion problem (observed variables shaded).

B. Dirichlet Priors and Gibbs Sampling
In the full paper, we will describe how to obtain an approximation to the above posterior distributions via a

computationally efficient and fast Gibbs sampling procedure. We will describe how Dirichlet prior distributions
can be used to define p(θ1) and p(θ2), and thus easily provide the conditional posteriors P(X |θ1, θ2,O1:N ) and
P(θ1, θ2 |X,O1:N ) required for Gibbs sampling. We will also describe how we set up these priors and describe
performance sensitivity to these priors in different operating conditions. Our results with synthetic data will show that
as updates are given by the human, these priors will lead to posteriors over the parameters that eventually conform to the
actual values that describe individual operator, and lead to statistically consistent/robust values for the posterior over X ,
even as operators make mistakes and deal with multiple target tracks in succession (requiring an extended graphical
model with additional versions of X and O variables for each target classification ‘frame’).
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